
Universidade de São Paulo
Departamento de Engenharia Mecatrônica e de
Sistemas Mecânicos
Bacharelado em Engenharia Mecatrônica

Gianlucci B. Minarelli e Renan R. do A. Gurgel
Biblioteca de funções de avaliação de pose e movimento para

o Microsoft Kinect

São Paulo
2015



Gianlucci B. Minarelli e Renan R. do A. Gurgel

Biblioteca de funções de avaliação de pose e movimento para
o Microsoft Kinect

Monografia apresentada no Departamento de
Engenharia Mecatrônica e Sistemas Mecâni-
cos da Escola Politécnica da Universidade de
São Paulo para obtenção do título de Enge-
nheiro. Área de Concentração: Engenharia
Mecatrônica

Orientador: Fabrício Junqueira
Doutor em Engenharia Mecatrônica - USP

São Paulo
2015



Catalogação-na-publicação

Minarelli, Gianlucci
        Biblioteca de funções de avaliação de pose e movimento para o Microsoft
Kinect / G. Minarelli, R. Gurgel -- São Paulo, 2015.
        128 p. 

        Trabalho de Formatura - Escola Politécnica da Universidade de São
Paulo. Departamento de Engenharia Mecatrônica e de Sistemas Mecânicos.

        1.Microsoft Kinect 2.Avaliação de Pose e Movimento Humanos
I.Universidade de São Paulo. Escola Politécnica. Departamento de
Engenharia Mecatrônica e de Sistemas Mecânicos II.t. III.Gurgel, Renan



Termo de Originalidade
Este relatório é apresentado como requisito parcial para obtenção do título de Engenheiro
na Escola Politécnica da Universidade de São Paulo. É o produto do nosso próprio trabalho,
exceto onde indicado no texto. O relatório pode ser livremente copiado e distribuído desde
que a fonte seja citada.



Resumo
A possibilidade de aplicação do Kinect para avaliação de movimento em áreas diversas como
fisioterapia ou treinamento gera a necessidade de uma biblioteca de funções de comparação
de movimentos e poses. O código aberto permite padronização e evita retrabalho. Um
estudo sobre funcionamento e fontes de erro do Kinect foi realizado. Foram analisadas as
diferentes opções para SDK e os tipos de dados. Usaram-se os diagramas da linguagem
UML para auxiliar a apresentação das especificações do projeto. Uma biblioteca que realiza
comparações de poses e movimentos genéricos foi implementada. Bibliotecas wrappers
auxiliares foram implementadas para realizar a interface entre a biblioteca de avaliação e
as duas versões da Microsoft Kinect SDK contempladas.

Palavras-chaves: Kinect. Biblioteca de Funções. Avaliação de Movimento Humano.



Abstract
The possibility of applying the Kinect for evaluating human movement in activities such
as rehabilitation or training creates the need of a movement and pose comparison library.
Open-source code allows standardization and avoids unnecessary work. The Kinect was
analyzed along with is error sources. The different available SDK s and data structures
were compared. UML diagrams were used to help the project and documentation of the
library. A pose and movement comparison library was implemented. Wrapper libraries
were implemented between the evaluation library and each version of the Microsoft Kinect
SDK.

Keywords: Kinect. Library. Human Movement Evaluation.



Sumário

Sumário . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Lista de ilustrações . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Lista de tabelas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1 INTRODUÇÃO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1 Objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 REVISÃO BIBLIOGRÁFICA . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Funcionamento do Kinect e fontes de erro . . . . . . . . . . . . . . . 13

3 LEVANTAMENTO DAS ALTERNATIVAS . . . . . . . . . . . . . . 16
3.1 SDK (Software Development Kit) . . . . . . . . . . . . . . . . . . . . 16
3.2 Tipos de dados de posição . . . . . . . . . . . . . . . . . . . . . . . . 17

4 PROJETO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1 Requisitos de projeto . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Diagrama de Casos de Uso . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Diagramas de Atividade . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.1 Comparar Posição a uma Referência (CDU01) . . . . . . . . . . . . . . . . 19
4.3.2 Comparar Movimento a uma Referência (CDU02) . . . . . . . . . . . . . . 20
4.3.3 Definir Parâmetros de Comparação (CDU03) . . . . . . . . . . . . . . . . 20
4.4 Diagrama de Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5 Definição das Coordenadas . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5.1 Ângulos para a SDK 1.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5.2 Ângulos para a SDK 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.6 Algoritmos de comparação . . . . . . . . . . . . . . . . . . . . . . . . 27
4.6.1 Poses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.6.2 Movimentos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.7 Aplicativo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.7.1 Interface Gráfica e Comandos . . . . . . . . . . . . . . . . . . . . . . . . 30

5 TESTES E RESULTADOS . . . . . . . . . . . . . . . . . . . . . . . 34

6 CONCLUSÕES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



REFERÊNCIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

APÊNDICES 44

APÊNDICE A – CÓDIGO FONTE: ALGORITMO DE COMPARA-
ÇÃO SEQUENCIAL . . . . . . . . . . . . . . . . . 45

A.1 Wrapper SDK 1.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.2 Wrapper SDK 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
A.3 KinectHumanMovementEvaluation.cs . . . . . . . . . . . . . . . . . . 47

APÊNDICE B – CÓDIGO FONTE: ALGORITMO PARA TESTES
DE PRECISÃO . . . . . . . . . . . . . . . . . . . . 71

B.1 testgenerator.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
B.2 jointsPlotter.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
B.3 genParmsPlotter.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

APÊNDICE C – CÓDIGO FONTE: APLICATIVO KINECT V1 . . 81



Lista de ilustrações

Figura 1 – Posição da biblioteca no fluxo (simplificado) de dados . . . . . . . . . . 10
Figura 2 – Aspecto geométrico do campo de visão do Kinect para Windows; o

valor dos parâmetros depende da configuração escolhida . . . . . . . . 13
Figura 3 – Ângulos horizontal e vertical do campo de visão do Kinect para Windows 14
Figura 4 – Dependendo do formato dos objetos analisados, alguns pontos (como

o indicado pela letra C) podem não ser recebidos pela câmera de
infravermelho . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figura 5 – Diagrama de casos de uso . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figura 6 – Diagrama de atividades de Comparar Posição a uma Referência . . . . 19
Figura 7 – Diagrama de atividades de Comparar Movimento a uma Referência . . 20
Figura 8 – Diagrama de atividades de Definir Parâmetros de Comparação . . . . . 20
Figura 9 – Diagrama de classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figura 10 – Representação gráfica da estrutura de dados skeleton, da SDK 1.8 . . . 23
Figura 11 – Representação gráfica da estrutura de dados skeleton, da SDK 2.0 . . . 25
Figura 12 – Representação gráfica bidimensional das regiões de avaliação e de transição 29
Figura 13 – As flechas verdes são para valores verdadeiros das condições testadas e

as vermelhas, para falsos. Os traços azuis indicam leitura da próxima
pose do movimento tentativa . . . . . . . . . . . . . . . . . . . . . . . 29

Figura 14 – Interface gráfica do software desenvolvido. . . . . . . . . . . . . . . . . 30
Figura 15 – Sucesso (excetuando-se a última esfera) na avaliação de dois movimentos,

o segundo gerado a partir do primeiro com adição de ruido branco de
desvio-padrão 0,1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figura 16 – Falha na avaliação de dois movimentos, mantendo-se os parâmetros mas
com o segundo movimento gerado a partir do primeiro com adição de
ruido branco de desvio-padrão 0,2. . . . . . . . . . . . . . . . . . . . . 34

Figura 17 – Sucesso (excetuando-se a última esfera) na avaliação de dois movimentos,
o segundo gerado a partir do primeiro com adição de ruido branco de
desvio-padrão 0,2, mas com um passo de raio maior e outros parâmetros
mantidos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figura 18 – Dois momentos do movimento realizado para testar a captura de dados
pelo sensor e seu registro na estrutura de dados presente na SDK. . . . 36

Figura 19 – Coordenadas cartesianas (da esquerda para a direita, X, Y e Z) da junta
mão direita, com eixos verticais em metros e horizontais em índice da
sequência. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



Figura 20 – Coordenadas cartesianas (da esquerda para a direita, X, Y e Z) da junta
pulso direito, com eixos verticais em metros e horizontais em índice da
sequência. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figura 21 – Coordenadas cartesianas (da esquerda para a direita, X, Y e Z) da junta
cotovelo direito, com eixos verticais em metros e horizontais em índice
da sequência. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figura 22 – Coordenadas cartesianas (da esquerda para a direita, X, Y e Z) da junta
ombro direito, com eixos verticais em metros e horizontais em índice da
sequência. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figura 23 – Três momentos do movimento realizado para testar o cálculo de ângulos
como parâmetros genéricos pela biblioteca. . . . . . . . . . . . . . . . . 38

Figura 24 – Ângulo do cotovelo, como definido na seção 4.5.2. À esquerda, valores
para o movimento considerado "padrão"; à direita, para a tentativa de
reprodução. Eixos verticais em radianos e horizontais em índice da
sequência. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figura 25 – Ângulo do cotovelo, como definido na seção 4.5.2. À esquerda, valores
para o movimento considerado "padrão"; à direita, para a tentativa de
reprodução. Eixos verticais em radianos e horizontais em índice da
sequência. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



9

Lista de tabelas

Tabela 1 – Comparação entre os SDKs considerados para o projeto (OPENKI-
NECT, 2014) (MICROSOFT, 2015b) (OPENNI, 2015) . . . . . . . . . 16

Tabela 2 – Comparação entre os tipos de dados de posição para o projeto . . . . . 17



10

1 Introdução

A necessidade de analisar o movimento humano e avaliá-lo seguindo algum critério
existe em diferentes áreas, como fisioterapia, treinamentos industriais, esporte, dentre
outras. A utilização do sensor MS Kinect para essa tarefa é interessante devido ao seu
baixo custo e fácil integração ao sistema operacional Windows, amplamente disseminado.

O presente projeto propõe o desenvolvimento de uma biblioteca que, utilizando os
dados obtidos pelo Kinect, será capaz de avaliar de forma quantitativa a precisão de um
movimento captado pelo sensor em relação a um movimento de referência previamente
registrado. A proposta é motivada pela possibilidade de desenvolvimento de projetos de
engenharia voltados para a reabilitação ou treinamento e que se valham de ambientes de
realidade virtual utilizando o Kinect.

Tal biblioteca possibilita não só uma padronização no modo como a avaliação
de movimentos é realizada em diversos aplicativos que utilizam o Kinect, através do
reaproveitamento do código desenvolvido, como também uma evolução contínua das
técnicas de avaliação implementadas (projeto Open Source).

Figura 1 – Posição da biblioteca no fluxo (simplificado) de dados

A reutilização do código da biblioteca aqui desenvolvida em outros projetos:

– Evitará a repetição do esforço de projeto e implementação de algoritmos de avaliação
durante o desenvolvimento de aplicativos para o Kinect, cujos desenvolvedores nem
sempre estão aptos a desenvolver funções de avaliação de movimentos confiáveis.

– Garantirá a homogeneidade dos resultados obtidos por esses aplicativos, possibili-
tando, por exemplo, a comparação de resultados obtidos por diferentes softwares.

– Garantirá a qualidade de tais resultados.



Capítulo 1. Introdução 11

A homogenização das técnicas de avaliação dos movimentos captados pelo sensor
promoverá, como mencionado, o aperfeiçoamento contínuo dessas técnicas e a otimização,
com o passar do tempo, dos resultados obtidos, uma vez que a biblioteca desenvolvida
estará sujeita a constantes aprimoramentos por meio de atualizações realizadas pela própria
comunidade de desenvolvedores que se valham de tais resultados.

Apesar do sistema descrito apresentar uma grande abrangência em diferentes
áreas (no desenvolvimento de jogos, aplicativos voltados para o setor de serviços, na
indústria, etc), o projeto aqui proposto irá se limitar à análise de movimento de pessoas,
focando-se assim, de uma forma geral, em aplicações nas áreas médicas (reabilitação), de
entretenimento (jogos) e voltadas ao treinamento de pessoal especializado.

A validade da avaliação de movimentos, usando o Kinect, para fins médicos, como
análise de movimentos típicos do mal de Parkinson (GALNA, 2014), de crises emocionais
em crianças (YU, 2011) ou de exercícios de reabilitação (BO, 2011), mostra o potencial do
projeto na área médica. As funções implementadas poderiam ser utilizadas, por exemplo,
no desenvolvimento de jogos voltados à reabilitação e com uma dificuldade (intensidade
do exercício) auto-regulável, de acordo com o feedback obtido com o auxílio da biblioteca.

1.1 Objetivos
O objetivo desse trabalho é projetar e implementar uma biblioteca de funções de ava-

liação de movimentos capturados pelo Kinect, para ser utilizada durante o desenvolvimento
de aplicativos que se valham de tais métodos.

Deseja-se um código que apresente eficiência de tempo de processamento e manute-
nibilidade, para que a publicação da biblioteca em código aberto possibilite o maior número
de aplicações das funções de avaliação de movimento, evitando retrabalho e fomentando
o desenvolvimento dessa classe de algoritmos. Para atingir esses objetivos, as seguintes
metas foram estabelecidas:

– Familiarização com a linguagem C#.

– Familiarização com as classes e métodos oferecidos pela SDK utilizada.

– Familiarização com as ferramentas de desenvolvimento de aplicativos oferecidas pelo
software Visual Studio.

– Projeto e implementação da biblioteca.

– Implementação de um algoritmo para o teste de precisão da biblioteca desenvolvida.

– Desenvolvimento de um aplicativo demonstrativo das funcionalidades da biblioteca
implementada.



Capítulo 1. Introdução 12

– Implementação de funções de processamento de imagens (poses) e vídeos (movi-
mentos) no aplicativo desenvolvido, de modo a simular funções passíveis de serem
implementadas em softwares que possam utilizar a biblioteca desenvolvida.

– Implementação e integração entre a biblioteca e o aplicativo projetados.

– Realização de testes demonstrativos da integração entre as funções do aplicativo
desenvolvido (tratamento de poses e movimentos) e funções de avaliação de poses e
movimentos da biblioteca.



13

2 Revisão Bibliográfica

2.1 Funcionamento do Kinect e fontes de erro
Primeiramente, para prever qual precisão poderá ser atingida usando-se o Kinect, é

necessário compreender as limitações dos sensores do Kinect e, portanto, seu funcionamento.
O Kinect V1 dispõe de duas câmeras: uma RGB (do inglês, vermelho, verde e azul) e
uma “câmera de profundidade” (baseada em infravermelho), além de um microfone
(MICROSOFT, 2015a). O Kinect V2 tem a câmera de cores HD 1080p e microfones
aprimorados (MICROSOFT, 2015c).

Como mostrado na Figura 2, o campo de visão do Kinect V1 para Windows tem o
valor de seus parâmetros dependentes da configuração escolhida (modos pré-programados):
no modo “próximo” de configuração, tem-se 𝑟1 = 0, 4𝑚, 𝑟2 = 0, 8𝑚, 𝑅1 = 2, 5𝑚 e
𝑅2 = 3𝑚; no modo “padrão”, tem-se 𝑟1 = 0, 8𝑚, 𝑟2 = 1, 2𝑚, 𝑅1 = 3, 5𝑚 e 𝑅2 = 4𝑚. Na
zona de leitura ótima, representada na Figura 2, tem-se melhor precisão e reatividade
(MICROSOFT, 2015a).

Figura 2 – Aspecto geométrico do campo de visão do Kinect para Windows; o valor dos
parâmetros depende da configuração escolhida

Os limites de ângulo de visão do Kinect V1 para Windows (ver Figura 3) são
𝛼 = 57, 5o (horizontal) e 𝛽 = 43, 5o (vertical, podendo ser rotacionado de 27o para cima
ou para baixo graças ao suporte articulado).

O Kinect V2 apresenta um campo de visão mais amplo (tanto na horizontal quanto
na vertical) (MICROSOFT, 2015c).



Capítulo 2. Revisão Bibliográfica 14

Figura 3 – Ângulos horizontal e vertical do campo de visão do Kinect para Windows

A captura de imagens em cores e em infravermelho se faz de forma simultânea,
com uma taxa de aquisição de aproximadamente 30 fps (do inglês, quadros por segundo)
para ambos os sensores (KHOSHELHAM, 2011) (MICROSOFT, 2015c).

Para fazer a medição de profundidade, a fonte do laser infravermelho emite um único
feixe, que é então difratado para projetar uma rede de pontos no volume do campo de visão
do Kinect, para finalmente ser captada pela câmera de infravermelho. Esses pontos são
então comparados a uma projeção num plano de referência (informações provenientes da
calibração) e, através de uma triangulação, obtém-se os valores de profundidade. Há, neste
processo, fontes de incerteza: as distorções provocadas pelas lentes e o desalinhamento
com os eixos da câmera RGB (KHOSHELHAM, 2011). A acurácia de profundidade do
sensor V2 é três vezes maior que a do V1 (MICROSOFT, 2015c).

Uma outra fonte de incertezas é a refletância dos objetos analisados pelo Kinect.
O usuário deverá evitar roupas pretas ou com detalhes ou acessórios refletivos, pois isso
poderá interferir com a leitura do infravermelho (MICROSOFT, 2015a). A iluminação
do ambiente também influencia as medições, mas o sensor V2 é bem mais robusto nesse
aspecto do que o sensor V1 (MICROSOFT, 2015c).

O fluxo das informações de profundidade lidas se faz usando inteiros de 11 bits
(um inteiro desses para cada ponto da rede e para cada instante de tempo em que houve
uma leitura), sendo que um deles indica apenas se aquele ponto foi encontrado na imagem
analisada ou não (ver Figura 4). Ou seja, a disparidade constatada é discretizada em 1024
níveis, incorrendo numa perda de informação (KHOSHELHAM, 2011).

Uma alternativa que melhora sensivelmente a qualidade das informações obtidas é
o uso de múltiplos Kinects em vez de apenas um (desde que não haja sobreposição dos
feixes, o que gera interferência entre as malhas lidas) (TONG, 2012) (RAKPRAYOON,
2011). Isso potencialmente evitaria que o Kinect interpretasse objetos distintos como



Capítulo 2. Revisão Bibliográfica 15

Figura 4 – Dependendo do formato dos objetos analisados, alguns pontos (como o indicado
pela letra C) podem não ser recebidos pela câmera de infravermelho

constituindo um corpo único, erro que de fato ocorre quando eles apresentam pontos
próximos e com profundidades semelhantes (BO, 2011).



16

3 Levantamento das Alternativas

Nesse capítulo serão descritas as alternativas tecnológicas (tipos de pacotes de
desenvolvimento) e estratégicas (tipos de análise de posicionamento) levantadas durante a
fase inicial de projeto e em relação as quais a biblioteca e aplicativos desenvolvidos nesse
trabalho são embasados.

3.1 SDK (Software Development Kit)
A primeira decisão foi em relação ao tipo de SDK que seria utilizado. Na Tabela 1

são apresentados os tipos considerados e alguns critérios utilizados na escolha da solução
final.

Tabela 1 – Comparação entre os SDKs considerados para o projeto (OPENKINECT, 2014)
(MICROSOFT, 2015b) (OPENNI, 2015)

Caracterísicas Software Development Kit (SDK)

Kinect for Win-
dows V1.8 e
V2.0

OpenKinect OpenNI

Comunidade Ativa Inativa (V1 ) e
Ativa (V2 ) Ativa

Fonte Oficial Não oficial Não oficial

Integração com o
Kinect Total Total Parcial

Código aberto Não Sim Sim

Rastreamento de
esqueleto Sim Não Sim

Documentação Ampla e organi-
zada Escassa

Ampla mas
pouco organi-
zada

A escolha pelas Microsoft Kinect SDK V1.8 e V2.0 foi feita baseada não só no
fato de que essas são as alternativas mais populares entre os desenvolvedores que utilizam
o Kinect mas também pois, sendo produtos desenvolvidos e distribuídos pela própria
Microsoft, essa é a solução que apresenta o maior número de manuais e outras publicações
de cunho didático – focadas na descrição do seu funcionamento, solução de problemas
típicos e sugestões de aplicação das funções disponíveis pela ferramenta.



Capítulo 3. Levantamento das Alternativas 17

A opção OpenKinect apresenta um nível baixo demais de tratamento de dados
para os objetivos deste trabalho, não apresentando a funcionalidade de rastreamento de
esqueleto (OPENKINECT, 2014), fundamental para o que se deseja.

3.2 Tipos de dados de posição
A segunda decisão tomada diz respeito aos tipos de dados que seriam utilizados

no processo de comparação de poses e movimentos. As alternativas de solução e alguns
critérios de seleção considerados estão descritos na Tabela 2.

Tabela 2 – Comparação entre os tipos de dados de posição para o projeto

Caracterísicas Tipos de dados (coordenadas)

Ângulos das juntas Coordenadas carte-
sianas das juntas

Obtenção Indireta Direta

Invariância a biotipo Sim Não

Invariância à posição
relativa ao sensor Sim Não

Quantidade de variá-
veis Menor ou igual a 45 60

A solução escolhida foi a representação da posição das juntas que compõem o
esqueleto captado pelo sensor pelos seus ângulos característicos. Essa solução, comumente
utilizada em projetos de modelagem biomecânica do corpo humano (BOGERT, 2013), não
só diminui a quantidade de informação necessária para a realização da comparação, como
também elimina problemas associados a diferenças fisiológicas entre o modelo que gerou a
referência armazenada pelo sistema e o usuário final, cuja imagem é captada e avaliada
em relação a essa referência.



18

4 Projeto

4.1 Requisitos de projeto
Diagramas UML foram utilizados para mostrar, de maneira clara, as funções que o

sistema projetado deverá ser capaz de realizar (requisitos funcionais) bem como o modo
como as mesmas serão realizadas.

Alguns requisitos de projeto importantes, no que diz respeito ao modo como o
sistema deve ser capaz de garantir a sua flexibilidade a diferentes tipos de comparações e
critérios de seleção, são:

– A biblioteca deve suportar o uso dos dois modelos do sensor Kinect atualmente
disponíveis no mercado (i.e. Kinect V1 e Kinect V2).

– As funções de comparação utilizadas devem ser projetadas de modo a possibilitar
a avaliação de esqueletos com N juntas, onde N não é necessariamente igual ao
número de juntas definidas nas classes Skeleton dos Kinect SDKs v1.8 (Kinect V1)
ou 2.0 (Kinect V2). Ou seja, o algoritmo deve ser capaz de avaliar, de uma forma
genérica, dois conjuntos de pontos, sem considerar as restrições impostas por um
modelo de esqueleto específico.

– A biblioteca deve suportar a utilização de parâmetros genéricos de avaliação associa-
dos às poses comparadas, de modo a não limitar os possíveis algoritmos de avaliação
suportados pelo sistema. Ou seja, uma pose deve ser definida como um conjunto de
parâmetros genéricos (coordenadas cartesianas ou ângulos característicos das juntas
que compõem a pose analisada, por exemplo) e as possíveis comparações realizadas
devem, então, ser adaptadas ao conjunto de parâmetros genéricos utilizado.

4.2 Diagrama de Casos de Uso
A seguir, encontram-se os diagramas UML que especificam o projeto da biblioteca.

Para elaboração do diagrama de casos de uso, considerou-se uma aplicação possível para a
biblioteca (reabilitação fisioterápica), então evidenciaram-se os casos de uso que dizem
respeito à biblioteca de fato. Os casos de uso que não estão no sistema Biblioteca de
funções de avaliação de movimento não serão contemplados neste projeto.



Capítulo 4. Projeto 19

Figura 5 – Diagrama de casos de uso

– Comparar Posição a uma Referência (CDU1): uma pose de entrada (a ser comparada)
é avaliada em relação a uma pose de referência.

– Comparar Movimento a uma Referência (CDU2): as poses de um determinado
movimento são comparadas a um conjunto de poses de referência.

– Definir Parâmetros de Comparação (CDU3): os parâmetros que serão utilizados nas
comparações de poses e movimentos (conjunto de poses) são definidos de acordo
com dados fornecidos pelo usuário (inputs) e as características das poses analisadas.

4.3 Diagramas de Atividade

4.3.1 Comparar Posição a uma Referência (CDU01)

Figura 6 – Diagrama de atividades de Comparar Posição a uma Referência

Esse diagrama mostra as relações entre as atividades que compõem o caso de uso
Comparar Posição a uma Referência. O objetivo desse caso de uso é a análise dos erros



Capítulo 4. Projeto 20

de posicionamento entre uma pose (conjunto de parâmetros genéricos representativos de
um Skeleton) de entrada (a ser comparada) e uma pose de referência, de acordo com
um determinado critério de avaliação. Informações sobre o conjunto de parâmetros de
comparação e o critério de avaliação utilizados podem ser vistas com mais detalhes nas
seções 4.5 e 4.6.1, respectivamente.

4.3.2 Comparar Movimento a uma Referência (CDU02)

Figura 7 – Diagrama de atividades de Comparar Movimento a uma Referência

Esse diagrama mostra as relações entre as atividades que compõem o caso de
uso Comparar Movimento a uma Referência. O objetivo desse caso de uso é a análise
dos erros de posicionamento entre um movimento (conjunto de poses) de entrada (a ser
comparado) e um movimento de referência, de acordo com um determinado critério de
avaliação. Informações sobre o critério de avaliação utilizado podem ser vistas com mais
detalhes na seção 4.6.2

4.3.3 Definir Parâmetros de Comparação (CDU03)

Figura 8 – Diagrama de atividades de Definir Parâmetros de Comparação

Esse diagrama mostra as relações entre as atividades que compõem o caso de uso
Definir Parâmetros de Comparação. O objetivo desse caso de uso é gerar o conjunto de



Capítulo 4. Projeto 21

parâmetros de comparação que serão associados às poses avaliadas. Informações sobre as
características desses parâmetros podem ser vistas com mais detalhes na seção 4.5.

4.4 Diagrama de Classes

Figura 9 – Diagrama de classes

As classes foram construídas tendo-se sempre em mente o objetivo de produzir uma
biblioteca abrangente e genérica, que pudesse avaliar poses e movimentos para diferentes
definições de bases de coordenadas e métricas.

Pose

– GenericParameters: uma estrutura Dictionary<string, double> de C# que
guarda os nomes e valores que cada coordenada genérica escolhida.

Movement

– Poses: uma sequência temporalmente ordenada de Poses.

Evaluation: a classe estática que contém todos os métodos do cerne da biblioteca
de avaliação.

– Spheres (Pose): método de avaliação de poses. Recebe duas poses (uma
referência e uma tentativa) e as compara com base em dois outros parâmetros:
raio mínimo e nota mínima. Uma descrição mais detalhada do algoritmo pode
ser encontrada na seção 4.6.1;



Capítulo 4. Projeto 22

– Spheres (Movement): método de avaliação de movimentos. Recebe dois mo-
vimentos (um referência e um tentativa) e os compara com base em quatro
outros parâmetros: raio mínimo, passo do raio, nota mínima e passo da nota.
Uma descrição mais detalhada do algoritmo pode ser encontrada na seção 4.6.2;

– IsInSphere: um método auxiliar, utilizado pelo método Spheres, que verifica se
uma dada pose se encontra na esfera definida por outra pose e um raio;

– MiddlePose: um método auxiliar, utilizado pelo método Spheres, que retorna a
pose média entre duas poses dadas;

– TransitionRadius: um método auxiliar, utilizado pelo método Spheres, que
calcula o raio de uma esfera de transição entre duas esferas. Mais detalhes
sobre o algoritmo completo podem ser encontrados na seção 4.6.2.

AuxGeometry: uma biblioteca auxiliar para realização dos cálculos de geometria
analítica necessários. Antes de se realizarem os cálculos, ocorre sempre a verificação
de singularidades geométricas.

– EuclideanNorm: calcula a norma euclideana do vetor definido entre duas poses;
– AngleMidPoint: calcula o ângulo definido entre dois pontos de extremidade e

um intermediário, recebendo como entrada os três pontos;
– NormalToPlan: calcula o vetor normal a um plano dado, recebendo como

entrada apenas os pontos que definem as entidades;
– AngleBetweenVectorAndPlan: calcula o ângulo entre um vetor e um plano,

recebendo como entrada apenas os pontos que definem as entidades;
– AngleBetweenPlanes: calcula o ângulo entre planos, recebendo como entrada

apenas os pontos que definem as entidades;
– AngleBetweenVectorAndVertical: calcula o ângulo entre um vetor e a vertical

(suposta como a terceira coordenada), recebendo como entrada apenas os pontos
que definem as entidades;

– ProjectPointOntoPlan: calcula o ponto que representa a projeção ortogonal de
um ponto em um plano, recebendo como entrada apenas os pontos que definem
as entidades;

– AngleInPlanBetweenProjectionAndVector: calcula o ângulo entre a projeção
de um vetor num plano e um outro vetor do plano, recebendo como entrada
apenas os pontos que definem as entidades;

– AngleInPlanBetweenProjections: calcula o ângulo entre as projeções de dois
vetores num plano, recebendo como entrada apenas os pontos que definem as
entidades.



Capítulo 4. Projeto 23

4.5 Definição das Coordenadas
As estruturas de dados que representam um corpo humano rastreado pelo sensor

são diferentes entre as versões 1.8 e 2.0 da Microsoft Kinect SDK. Criaram-se, portanto,
duas bibliotecas wrappers auxiliares (ver apêndices A.1 e A.2, uma para cada versão de
SDK trabalhada. Essas bibliotecas servem de interface entre a biblioteca de avaliação de
movimento (apêndice A.3) e as diferentes SDK s, além de modularizarem as referências
necessárias (evitando múltiplas referências a uma mesma SDK em que a única distinção é
a versão).

A partir das estruturas de dados recebidas pelas bibliotecas wrappers, podem se
definir conjuntos de coordenadas que sejam representativas para o tipo de movimento
ou pose que se deseja analisar. Foram definidos dois conjuntos, um para cada versão de
SDK, que usam ângulos calculados a partir das posições das juntas, para representar os
ângulos das articulações do corpo humano. Esse tipo de modelo é utilizado na fisioterapia
(BOGERT, 2013).

4.5.1 Ângulos para a SDK 1.8

A base de coordenadas é escolhida considerando-se a hipótese heurística de que
uma rotação em torno do eixo vertical não tenha importância.

Figura 10 – Representação gráfica da estrutura de dados skeleton, da SDK 1.8

Na Figura 10, os nomes dos pontos como constam na SDK são:

A: FootRight (E: FootLeft);

B: AnkleRight (F: AnkleLeft);



Capítulo 4. Projeto 24

C: KneeRight (G: KneeLeft);

D: HipRight (H: HipLeft);

I: HandRight (M: HandLeft);

J: WristRight (N: WristLeft);

K: ElbowRight (O: ElbowLeft);

L: ShoulderRight (P: ShoulderLeft);

Q: HipCenter ;

R: Spine;

S: ShoulderCenter ;

T: Head;

Definição das coordenadas, usando os pontos indicados na Figura 10:

– Joelhos:
𝜃𝐽𝐷 = ∠𝐵𝐶𝐷, 𝜃𝐽𝐸 = ∠𝐹𝐺𝐻

– Cotovelos:
𝜃𝐶𝐷 = ∠𝐽𝐾𝐿, 𝜃𝐶𝐸 = ∠𝑁𝑂𝑃

– Mãos:
𝜃𝑀1𝐷 = ∠𝐼𝐽𝐾, 𝜃𝑀1𝐸 = ∠𝑀𝑁𝑂

𝜃𝑀2𝐷 = ∠(−→𝐼𝐽, 𝑝𝑙𝑎𝑛𝑜(𝐽, 𝐾, 𝐿)), 𝜃𝑀2𝐸 = ∠(−−→
𝑀𝑁, 𝑝𝑙𝑎𝑛𝑜(𝑁, 𝑂, 𝑃 ))

– Pés:
𝜃𝑃 1𝐷 = ∠𝐴𝐵𝐶, 𝜃𝑀1𝐸 = ∠𝐸𝐹𝐺

𝜃𝑃 2𝐷 = ∠(−→
𝐴𝐵, 𝑝𝑙𝑎𝑛𝑜(𝐵, 𝐶, 𝐷)), 𝜃𝑃 2𝐸 = ∠(−→

𝐸𝐹, 𝑝𝑙𝑎𝑛𝑜(𝐹, 𝐺, 𝐻))

– Pernas:

𝜃𝑃 𝑟1𝐷 = ∠(−−→𝐶𝐷, 𝑝𝑙𝑎𝑛𝑜(𝐷, 𝐻, 𝑄)), 𝜃𝑃 𝑟1𝐸 = ∠(−−→𝐺𝐻, 𝑝𝑙𝑎𝑛𝑜(𝐷, 𝐻, 𝑄))

𝜃𝑃 𝑟2𝐷 = ∠(𝑝𝑟𝑜𝑗𝑝𝐿𝑎𝑛𝑜(𝐷,𝐻,𝑄)
−−→
𝐶𝐷,

−−→
𝐷𝑄), 𝜃𝑃 𝑟2𝐸 = ∠(𝑝𝑟𝑜𝑗𝑝𝑙𝑎𝑛𝑜(𝐷,𝐻,𝑄)

−−→
𝐺𝐻,

−−→
𝐻𝑄)

– Braços:
𝜃𝐵1𝐷 = ∠𝐾𝐿𝑆, 𝜃𝐵1𝐸 = ∠𝑂𝑃𝑆

𝜃𝐵2𝐷 = ∠(−−→𝐾𝐿, 𝑝𝑙𝑎𝑛𝑜(𝐿, 𝑃, 𝑆)), 𝜃𝐵2𝐸 = ∠(−→
𝑃𝑆, 𝑝𝑙𝑎𝑛𝑜(𝐿, 𝑃, 𝑆))

𝜃𝐵3𝐷 = ∠(−→
𝐽𝐾, 𝑝𝑙𝑎𝑛𝑜(𝐾, 𝐿, 𝑆)), 𝜃𝐵3𝐸 = ∠(−−→𝑁𝑂, 𝑝𝑙𝑎𝑛𝑜(𝑂, 𝑃, 𝑆))



Capítulo 4. Projeto 25

– Torso:
𝜃𝑇 1 = ∠𝑄𝑅𝑆

𝜃𝑇 2 = ∠(𝑝𝑙𝑎𝑛𝑜(𝐷, 𝐻, 𝑄)), 𝑝𝑙𝑎𝑛𝑜(𝐿, 𝑃, 𝑅))

𝜃𝑇 3 = ∠(𝑝𝑟𝑜𝑗𝑝𝑙𝑎𝑛𝑜(𝐷,𝐻,𝑄)
−→
𝑄𝑅, 𝑝𝑟𝑜𝑗𝑝𝑙𝑎𝑛𝑜(𝐷,𝐻,𝑄)

−→
𝑅𝑆)

– Cabeça:
𝜃𝐶𝑏1 = ∠(𝑝𝑟𝑜𝑗𝑝𝑙𝑎𝑛𝑜(𝐿,𝑃,𝑆)

−→
𝑆𝑇 ,

−→
𝑅𝑆)

𝜃𝐶𝑏2 = ∠𝑅𝑆𝑇

– Inclinação:
𝜃𝐶𝑏2 = ∠(−→𝑅𝑆, 𝑔⃗)

4.5.2 Ângulos para a SDK 2.0

Novamente, a base de coordenadas é escolhida considerando-se a hipótese heurística
de que uma rotação em torno do eixo vertical não tenha importância.

Figura 11 – Representação gráfica da estrutura de dados skeleton, da SDK 2.0

Na Figura 11, os nomes dos pontos como constam na SDK são:

A: FootRight (E: FootLeft);

B: AnkleRight (F: AnkleLeft);

C: KneeRight (G: KneeLeft);

D: HipRight (H: HipLeft);



Capítulo 4. Projeto 26

I: HandRight (M: HandLeft);

I’: HandTipRight (M’: HandTipLeft);

I”: ThumbRight (M”: ThumbLeft);

J: WristRight (N: WristLeft);

K: ElbowRight (O: ElbowLeft);

L: ShoulderRight (P: ShoulderLeft);

Q: SpineBase;

R: SpineMid;

S: SpineShoulder ;

T’: Neck;

T: Head;

Definição das coordenadas, usando os pontos indicados na Figura 11:

– Joelhos:
𝜃𝐽𝐷 = ∠𝐵𝐶𝐷, 𝜃𝐽𝐸 = ∠𝐹𝐺𝐻

– Cotovelos:
𝜃𝐶𝐷 = ∠𝐽𝐾𝐿, 𝜃𝐶𝐸 = ∠𝑁𝑂𝑃

– Mãos:
𝜃𝑀1𝐷 = ∠𝐼𝐽𝐾, 𝜃𝑀1𝐸 = ∠𝑀𝑁𝑂

𝜃𝑀2𝐷 = ∠(−→𝐼𝐽, 𝑝𝑙𝑎𝑛𝑜(𝐽, 𝐾, 𝐿)), 𝜃𝑀2𝐸 = ∠(−−→
𝑀𝑁, 𝑝𝑙𝑎𝑛𝑜(𝑁, 𝑂, 𝑃 ))

– Pés:
𝜃𝑃 1𝐷 = ∠𝐴𝐵𝐶, 𝜃𝑀1𝐸 = ∠𝐸𝐹𝐺

𝜃𝑃 2𝐷 = ∠(−→
𝐴𝐵, 𝑝𝑙𝑎𝑛𝑜(𝐵, 𝐶, 𝐷)), 𝜃𝑃 2𝐸 = ∠(−→

𝐸𝐹, 𝑝𝑙𝑎𝑛𝑜(𝐹, 𝐺, 𝐻))

– Pernas:

𝜃𝑃 𝑟1𝐷 = ∠(−−→𝐶𝐷, 𝑝𝑙𝑎𝑛𝑜(𝐷, 𝐻, 𝑄)), 𝜃𝑃 𝑟1𝐸 = ∠(−−→𝐺𝐻, 𝑝𝑙𝑎𝑛𝑜(𝐷, 𝐻, 𝑄))

𝜃𝑃 𝑟2𝐷 = ∠(𝑝𝑟𝑜𝑗𝑝𝐿𝑎𝑛𝑜(𝐷,𝐻,𝑄)
−−→
𝐶𝐷,

−−→
𝐷𝑄), 𝜃𝑃 𝑟2𝐸 = ∠(𝑝𝑟𝑜𝑗𝑝𝑙𝑎𝑛𝑜(𝐷,𝐻,𝑄)

−−→
𝐺𝐻,

−−→
𝐻𝑄)



Capítulo 4. Projeto 27

– Braços:
𝜃𝐵1𝐷 = ∠𝐾𝐿𝑆, 𝜃𝐵1𝐸 = ∠𝑂𝑃𝑆

𝜃𝐵2𝐷 = ∠(−−→𝐾𝐿, 𝑝𝑙𝑎𝑛𝑜(𝐿, 𝑃, 𝑆)), 𝜃𝐵2𝐸 = ∠(−→
𝑃𝑆, 𝑝𝑙𝑎𝑛𝑜(𝐿, 𝑃, 𝑆))

𝜃𝐵3𝐷 = ∠(−→
𝐽𝐾, 𝑝𝑙𝑎𝑛𝑜(𝐾, 𝐿, 𝑆)), 𝜃𝐵3𝐸 = ∠(−−→𝑁𝑂, 𝑝𝑙𝑎𝑛𝑜(𝑂, 𝑃, 𝑆))

– Torso:
𝜃𝑇 1 = ∠𝑄𝑅𝑆

𝜃𝑇 2 = ∠(𝑝𝑙𝑎𝑛𝑜(𝐷, 𝐻, 𝑄)), 𝑝𝑙𝑎𝑛𝑜(𝐿, 𝑃, 𝑅))

𝜃𝑇 3 = ∠(𝑝𝑟𝑜𝑗𝑝𝑙𝑎𝑛𝑜(𝐷,𝐻,𝑄)
−→
𝑄𝑅, 𝑝𝑟𝑜𝑗𝑝𝑙𝑎𝑛𝑜(𝐷,𝐻,𝑄)

−→
𝑅𝑆)

– Pescoço:
𝜃𝑃 𝑐 = ∠𝑅𝑆𝑇 ′

– Cabeça:
𝜃𝐶𝑏1 = ∠(𝑝𝑟𝑜𝑗𝑝𝑙𝑎𝑛𝑜(𝐿,𝑃,𝑆)

−→
𝑆𝑇 ,

−→
𝑅𝑆)

𝜃𝐶𝑏2 = ∠𝑇 ′𝑆𝑇

– Inclinação:
𝜃𝐶𝑏2 = ∠(−→𝑅𝑆, 𝑔⃗)

4.6 Algoritmos de comparação
Definem-se alguns termos que representam as entidades utilizadas no algoritmo:

∙ Pose: um conjunto de coordenadas genéricas (seus nomes e seus valores) que define
uma posição de um corpo humano (ou parte dele) para um instante de tempo. Pode
ser representado como um vetor 𝑝.

∙ Movimento: um conjunto de poses de mesmas coordenadas genéricas, de um mesmo
corpo humano (ou parte dele), referentes a instantes de tempo sequenciais: 𝑀 = {𝑝𝑖}

∙ Referência: um objeto (pose ou movimento) considerado como padrão (base de
uma comparação).

∙ Tentativa: um objeto (pose ou movimento) que tenta aproximar uma referência.

Foram implementados um algoritmo para comparação de movimentos e um para
comparação de poses, ambos nomeados spheres, aproveitando-se da sobrecarga de métodos
possível em C#. Observe-se que as implementações são agnósticas à escolha da base de
coordenadas (e não somente aplicável àquelas definidas na seção 4.5), produzindo assim
algoritmos genéricos que podem ser reutilizados para outras convenções ou modelos.



Capítulo 4. Projeto 28

4.6.1 Poses

O método spheres para poses recebe como parâmetros duas poses: uma referência
e uma tentativa, e dois valores de ponto flutuante: o raio mínimo e a nota mínima. Como
resposta, ele retorna um valor de ponto flutuante representando a avaliação.

Funcionamento: usa-se a norma euclideana. Caso a distância entre a tentativa
e a referência seja inferior ao raio mínimo (ou seja, se a tentativa está contida na esfera
mínima cujo centro é a referência), o método retorna o valor 1, indicando sucesso total.
Se não, avalia-se a razão entre o raio mínimo e a distância entre poses; se inferior à nota
mínima, o método retorna -1 (indicando falha); se for superior a nota mínima, o método
retorna o valor dessa razão como nota da avaliação.

4.6.2 Movimentos

Movimentos podem ser construidos a partir de uma lista de poses ou lidos de um
arquivo .txt que respeitem o seguinte padrão: cada parâmetro deve estar numa linha
diferente, com seus valores temporalmente sequenciais separados por espaços em branco.

O método spheres para movimentos recebe como parâmetros dois movimentos: um
referência e um tentativa, e quatro valores de ponto flutuante: o raio mínimo, o passo do
raio, a nota mínima e o passo da nota. Como resposta, ele retorna um valor de ponto
flutuante representando a avaliação.

Funcionamento: são definidas regiões de avaliação (𝑍𝜑)𝑖 em torno de cada pose
𝑝𝑖 para cada nível de precisão 𝜑 estabelecido de maneira discreta, com passo da nota 𝑠𝑡𝑒𝑝𝜑,
da seguinte maneira:

(𝑍𝜑)𝑖 : {𝑝 | ‖𝑝−𝑝𝑖‖ ≤ 𝑟𝜑}, sendo 𝑟𝜑 = 𝑟𝑚í𝑛 + 𝑗 *𝑠𝑡𝑒𝑝𝑟, em que 𝑟𝑚í𝑛 é o raio mínimo,
𝑗 é o inteiro correspondente ao número do passo e 𝑠𝑡𝑒𝑝𝑟 é o passo do raio.

São também definidas as regiões de transição (𝑇𝜑)𝑖,𝑖+1 entre duas poses consecutivas:

(𝑇𝜑)𝑖,𝑖+1 : {𝑝 | ‖𝑝−𝑝𝑘‖ ≤ 𝑅𝜑}, com 𝑝𝑘 = 1
2*(𝑝𝑖+𝑝𝑖+1) e 𝑅𝜑 =

√︁
𝑟2

𝜑 + (1
2 * ‖𝑝𝑖+1 − 𝑝𝑖‖)2.

A Figura 12 mostra a ideia análoga para duas dimensões, para um dado 𝜑, com
as circunferências de linha cheia representando (𝑍𝜑)0 e (𝑍𝜑)1, e a circunferência de linha
pontilhada representando (𝑇𝜑)0,1. Há também a representação gráfica de 𝑅𝜑 e 𝑟𝜑.

Avalia-se, então, um movimento através do algoritmo ilustrado na figura 13.

Sendo 𝜑𝑖 a precisão de cada seção do movimento e 𝑛 o número de poses contidas
no movimento referência, a nota final (o velor de retorno do método) vale:

𝑛𝑜𝑡𝑎 = 1
𝑛 − 1

𝑛−1∑︁
𝑖=1

𝜑𝑖

Em caso de alguma falha, o método retorna imediatamente com valor -1.



Capítulo 4. Projeto 29

Figura 12 – Representação gráfica bidimensional das regiões de avaliação e de transição

Figura 13 – As flechas verdes são para valores verdadeiros das condições testadas e as
vermelhas, para falsos. Os traços azuis indicam leitura da próxima pose do
movimento tentativa



Capítulo 4. Projeto 30

4.7 Aplicativo
No decorrer do trabalho um aplicativo para o Kinect V1 foi desenvolvido a fim de

demonstrar as funcionalidades da biblioteca projetada e o potencial da mesma como uma
importante ferramenta no desenvolvimento de aplicativos que se valham da comparação
de poses e movimentos aqui proposta.

O software foi desenvolvido no Visual Studio Community 2015, em C# e utilizando
o framework .NET 4.6 oferecido pela Microsoft.

O código fonte do aplicativo em sua versão final pode ser visto no Apêndice C.

4.7.1 Interface Gráfica e Comandos

Nessa seção serão descritos todos os elementos que compõem a interface gráfica do
software desenvolvido, detalhando as suas funções e interdependências dentro do código.

Durante a descrição que será realizada, poses ou movimentos de referência, ou seja,
poses ou movimentos que seriam registrados previamente à utilização do aplicativo pelo
usuário final do mesmo (registrados por fisioterapeutas para a utilização do software na
área de reabilitação, por exemplo), serão referenciados como elementos de referência.

Do mesmo modo, poses ou movimentos realizados pelo usuário final do software
(um paciente, continuando o exemplo da utilização do aplicativo na área de reabilitação)
serão referenciados como elementos do usuário.

Figura 14 – Interface gráfica do software desenvolvido.

1. Tela esquerda: Nessa tela são plotados poses e movimentos de referência quando



Capítulo 4. Projeto 31

o aplicativo se encontra em modo de comparação (vide itens 3 e 4). Em modo de
captura, essa tela plota continuamente os movimentos capturados em tempo real
pelo sensor (feedback visual).

2. Tela Direita: Nessa tela são plotados poses e movimentos do usuário quando o
aplicativo se encontra em modo de comparação (vide itens 3 e 4). Em modo de
captura, essa tela plota o movimento que será salvo pelo sistema quando o botão
REC (item 10) é pressionado, ou mostra a pose que será salva pelo sistema quando
o botão Take Photo (item 9) é pressionado, dependendo do que o usuário deseja
capturar - movimento ou pose (itens 6 e 5, respectivamente).

3. Capture Mode: Quando o aplicativo se encontra nesse modo de operação, botões e
demais elementos gráficos que permitem que o usuário realize funções de captura de
imagens (poses) ou vídeos (movimentos) são acionados (i.e. podem ser pressionados).

4. Comparing Mode: Quando o aplicativo se encontra nesse modo de operação, botões e
demais elementos gráficos que permitem que o usuário realize funções de comparação
de imagens (poses) ou vídeos (movimentos) são acionados.

5. Photo: Quando o aplicativo se encontra nesse modo de operação, botões e demais ele-
mentos gráficos que permitem que o usuário realize funções de captura ou comparação
de imagens (poses) são acionados.

6. Video: Quando o aplicativo se encontra nesse modo de operação, botões e demais ele-
mentos gráficos que permitem que o usuário realize funções de captura ou comparação
de vídeos (movimentos) são acionados.

7. Seated Mode: Quando essa caixa de seleção é marcada, juntas que compõem a parte
inferior do esqueleto captado (quadril, joelhos, tornozelos e pés) são ignoradas na
construção da figura do esqueleto que será plotado na tela.

8. Model: Quando essa caixa de seleção é marcada, qualquer pose ou movimento salvos
durante a utilização do software (vide item 12) serão marcados pelo sistema como
sendo poses ou movimentos de referência.

9. Take Photo: No instante em que esse botão é pressionado, a imagem (pose) mostrada
na Tela Esquerda (item 1) é guardada em uma variável global no código (memória
volátil).

10. REC: No instante em que esse botão é pressionado, as imagens (poses) que compõem
o movimento capturado pelo sensor começam a ser armazenadas pelo software (nova-
mente utilizando variáveis globais, ou seja, a memória ainda é volátil). Pressionando
o botão uma segunda vez finaliza o processo de captura do vídeo (movimento).



Capítulo 4. Projeto 32

11. Starting Photo: Após o botão REC (item 10) ser pressionado pela segunda vez, é
possível selecionar uma nova pose inicial para o movimento capturado utilizando os
botões de Shift (itens 17 e 18) associados à Tela Direita. Ao pressionar esse botão, a
pose mostrada na Tela Direita será a nova pose inicial do movimento capturado.

12. Save: Ao pressionar esse botão, poses e movimentos previamente armazenados em
variáveis globais (memória volátil) dentro do código (vide itens 9 e 10) são exportados
na forma de arquivos de texto (memória não-volátil).

13. Load Photo: Ao pressionar esse botão, uma pose será carregada na Tela Direita
(item 2).

14. Load Model Photo: Ao pressionar esse botão, uma pose será carregada na Tela
Esquerda (item 1).

15. Load Video: Ao pressionar esse botão, um movimento será carregada na Tela Direita
(item 2). Inicialmente a tela mostrará apenas uma pose (pose inicial do movimento),
porém botões para a manipulação do movimento carregado estarão ativos (vide itens
17, 18, 19, 20, 21, 22 e 23).

16. Load Model Video: Ao pressionar esse botão, um movimento será carregada na Tela
Esquerda (item 1). Inicialmente a tela mostrará apenas uma pose (pose inicial do
movimento), porém botões para a manipulação do movimento carregado estarão
ativos (vide itens 17, 18, 19, 20, 21, 22 e 23).

17. Shift (L): Ao pressionar esse botão, a pose imediatamente anterior à atualmente
plotada na tela alvo (esquerda ou direita), e que compõem o movimento carregado
pelo sistema (vide itens 15 e 16), é exibida. O botão mais a esquerda está associado
à Tela Esquerda (item 1), enquanto que o botão mais a direita está associado à Tela
Direita (item 2).

18. Shift (R): Ao pressionar esse botão, a pose imediatamente posterior à atualmente
plotada na tela alvo (esquerda ou direita), e que compõem o movimento carregado
pelo sistema (vide itens 15 e 16), é exibida. O botão mais a esquerda está associado
à Tela Esquerda (item 1), enquanto que o botão mais a direita está associado à Tela
Direita (2).

19. Start Loop: Ao pressionar esse botão, as poses que compõem o movimento carregado
pelo sistema (vide itens 15 e 16) são plotadas na tela alvo (esquerda ou direita)
de maneira sequencial crescente e cíclica (i.e. em loop). O botão mais a esquerda
está associado à Tela Esquerda (item 1), enquanto que o botão mais a direita está
associado à Tela Direita (item 2).



Capítulo 4. Projeto 33

20. Stop Loop: Ao pressionar esse botão, o plot sequencial crescente e cíclico das poses
que compõem o movimento carregado é interrompido na tela alvo. O botão mais
a esquerda está associado à Tela Esquerda (item 1), enquanto que o botão mais a
direita está associado à Tela Direita (item 2).

21. Sync: Ao pressionar esse botão, os movimentos plotados em ambas as telas voltam à
sua posição inicial (primeira pose do movimento), sincronizando o índice das poses
atualmente plotadas.

22. Loop + : Ao pressionar esse botão, o intervalo de tempo entre o plot em loop de duas
poses consecutivas, em ambos os movimentos, é decrementado. Ou seja, a velocidade
com que as imagens são exibidas em sequência aumenta (velocidade do movimento
plotado aumenta).

23. Loop - : Ao pressionar esse botão, o intervalo de tempo entre o plot em loop de duas
poses consecutivas, em ambos os movimentos, é incrementado. Ou seja, a velocidade
com que as imagens são exibidas em sequência diminui (velocidade do movimento
plotado diminui).

24. Compare: Ao pressionar esse botão, é realizada a comparação entre as poses ou
movimentos de interesse, previamente carregados e exibidos em ambas as telas (1 e
2).

25. Textbox : Caixa de texto onde o resultado da comparação (vide item 24) é exibido.



34

5 Testes e Resultados

Para realizar os testes de todo o código desenvolvido, foram desenvolvidos três
pequenos programas auxiliares em Python, para que fosse possível avaliar diferentes etapas
do fluxo da biblioteca de maneira modular.

Um deles, testgenerator.py (ver apêndice B.1) gerou sinais senoidais e imitações
com ruido branco para o teste do algoritmo Spheres. Os resultados podem ser vistos nas
figuras 15, 16 e 17.

Figura 15 – Sucesso (excetuando-se a última esfera) na avaliação de dois movimentos, o
segundo gerado a partir do primeiro com adição de ruido branco de desvio-
padrão 0,1.

Figura 16 – Falha na avaliação de dois movimentos, mantendo-se os parâmetros mas com
o segundo movimento gerado a partir do primeiro com adição de ruido branco
de desvio-padrão 0,2.



Capítulo 5. Testes e Resultados 35

Figura 17 – Sucesso (excetuando-se a última esfera) na avaliação de dois movimentos, o
segundo gerado a partir do primeiro com adição de ruido branco de desvio-
padrão 0,2, mas com um passo de raio maior e outros parâmetros mantidos.

Os outros dois, jointsPlotter.py (apêndice B.2) e genParmsPlotter.py (apêndice
B.3) receberam arquivos .txt contendo, no primeiro caso, as coordenadas cartesianas das
juntas lidas diretamente pelo Kinect V2 e, no segundo caso, os valores dos parâmetros
genéricos (ângulos das articulações) para dois movimentos realizados: um considerado
"padrão"e o outro sendo uma tentativa de imitar o primeiro (realizados pela mesma pessoa).

O jointsPlotter.py confirmou que a captura de dados pelo Kinect V2 e sua SDK
funcionaram de maneira satisfatória. O movimento realizado para teste é ilustrado pela
figura 18. Os gráficos gerados das coordenadas cartesianas das juntas lidas estão nas figuras
19, 20, 21 e 22. Observou-se que as regiões iniciais e finais apresentam comportamento
instável, mas isso deve-se ao tempo que a pessoa levou para entrar e sair do campo de
visão do sensor. Exluindo-se esse detalhe, o comportamento dos dados observados reflete
satisfatoriamente o movimento realizado.



Capítulo 5. Testes e Resultados 36

Figura 18 – Dois momentos do movimento realizado para testar a captura de dados pelo
sensor e seu registro na estrutura de dados presente na SDK.

Figura 19 – Coordenadas cartesianas (da esquerda para a direita, X, Y e Z) da junta mão
direita, com eixos verticais em metros e horizontais em índice da sequência.



Capítulo 5. Testes e Resultados 37

Figura 20 – Coordenadas cartesianas (da esquerda para a direita, X, Y e Z) da junta pulso
direito, com eixos verticais em metros e horizontais em índice da sequência.

Figura 21 – Coordenadas cartesianas (da esquerda para a direita, X, Y e Z) da junta
cotovelo direito, com eixos verticais em metros e horizontais em índice da
sequência.

Figura 22 – Coordenadas cartesianas (da esquerda para a direita, X, Y e Z) da junta ombro
direito, com eixos verticais em metros e horizontais em índice da sequência.

O genParmsPlotter.py confirmou que o cálculo dos ângulos seguiu o esperado. Para
esse teste, uma pessoa realizou um movimento (numa tentativa de variar apenas um dos
ângulos da base, para simplificar a análise) que foi tomado como padrão e, em seguida,
tentou repeti-lo. O movimento em questão é ilustrado pela figura 23.



Capítulo 5. Testes e Resultados 38

Os dados iniciais e finais foram desprezados,No movimento realizado, tentou-se
manter a variação angular do cotovelo constante no tempo, o que foi bem representado
pelos resultados, como pode ser visto na figura 24. Além disso, os valores também são
condizentes: a figura mostra uma variação de aproximadamente 70 graus (do instante
inicial ao final), o que corresponde aos valores calculados (variação de aproximadamente
1,3 radianos). Para validação, ilustrou-se também a comparação dos valores de ângulo
para o cotovelo esquerdo, que ficou parado; de fato, como pode ser visto na figura 25, as
variações foram inferiores a 1% da variação calculada para o cotovelo direito.

Figura 23 – Três momentos do movimento realizado para testar o cálculo de ângulos como
parâmetros genéricos pela biblioteca.

Figura 24 – Ângulo do cotovelo, como definido na seção 4.5.2. À esquerda, valores para o
movimento considerado "padrão"; à direita, para a tentativa de reprodução.
Eixos verticais em radianos e horizontais em índice da sequência.



Capítulo 5. Testes e Resultados 39

Figura 25 – Ângulo do cotovelo, como definido na seção 4.5.2. À esquerda, valores para o
movimento considerado "padrão"; à direita, para a tentativa de reprodução.
Eixos verticais em radianos e horizontais em índice da sequência.



40

6 Conclusões

A biblioteca desenvolvida, como exemplificado pela implementação das funções de
comparação de poses e movimentos descritas (vide seção 4.6), possui grande flexibilidade
em relação aos tipos de parâmetros de comparação que podem ser associados às poses a
serem avaliadas e utilizados em qualquer método de avaliação implementado.

No caso das funções de avaliação aqui projetadas, os parâmetros de comparação
das poses a serem avaliadas foram os ângulos característicos das juntas dos esqueletos que
representam tais poses, porém, é importante notar, qualquer outro parâmetro (coordenadas
cartesianas das juntas, por exemplo) poderia ser utilizado em conjunto com a função de
comparação implementada (ou qualquer outra função de comparação), gerando resultados
equivalentes.

Isso acontece devido ao modo como uma pose é definida dentro da biblioteca
(vide seção 4.4), possuindo um conjunto de parâmetros genéricos (que podem ser ângulos,
coordenadas absolutas, pesos, ou quaisquer outros valores atribuídos pelo usuário da
biblioteca) como o único descritivo das características dessa pose. Desse modo, uma pose
não mais é associada a um número fixo de valores e nem a um tipo fixo associado a esses
valores (60 coordenadas cartesianas, por exemplo, como é definido no construtor de um
Skeleton na Kinect SDK v1.8).

A biblioteca também é flexível em relação ao tipo de sensor utilizado, uma vez que
suporta a utilização de ambas as versões do sensor Kinect (Kinect V1 e Kinect V2), desde
que a SDK utilizada esteja atualizada (v1.8 para o V1 e v2.0 para o V2).

Os projeto foi realizado utilizando um aplicativo desenvolvido exclusivamente para
o Kinect V1, com a SDK v1.8, porém, como a definição de uma pose dentro da biblioteca
não está necessariamente associada a nenhuma propriedade previamente estabelecida ao
instanciar um objeto Skeleton dentro do aplicativo (como citado nos parágrafos anteriores),
dados recebidos de aplicativos projetados para qualquer versão do sensor podem ser
processados pelos métodos de avaliação de uma maneira única, garantindo resultados
consistentes e independentes do sensor utilizado.

Por fim, é importante notar que a possibilidade de crescimento da biblioteca
desenvolvida é praticamente ilimitada, uma vez que a implementação de novos métodos
de avaliação depende somente da criatividade do desenvolvedor e da sua capacidade em
transcrever expressões e métodos matemáticos dentro da biblioteca. A utilização contínua
dessa biblioteca como uma ferramenta de avaliação de poses e movimentos promoveria
uma evolução natural da mesma pela comunidade de usuários, gerando não só um aumento
no número de métodos de avaliação disponíveis (como discutido), como também uma



Capítulo 6. Conclusões 41

melhoria significativa (e constante) na eficiência computacional, robustez e precisão do
sistema como um todo.



42

Referências

BELFIORE, P. P.; FáVERO, L. P. L. Técnicas estatísticas multivariadas para análise do
comportamento de grupos supermercadistas brasileiros. IX Seminários em Administração
FEA-USP, 2006. Nenhuma citação no texto.

BO, A. e. a. Joint angle estimation in rehabilitation with inertial sensors and its
integration with kinect. Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, p. 3479–3483, 2011. Citado 2 vezes nas páginas 11 e 15.

BOGERT, A. J. e. a. A real-time system for biomechanical analysis of human movement
and muscle function. PubMed Central, 2013. Citado 2 vezes nas páginas 17 e 23.

GALNA, B. e. a. Accuracy of the microsoft kinect sensor for measuring movement in
people with parkinson’s disease. Gait and Posture, v. 39, p. 1062–1068, 2014. Citado na
página 11.

HAGEGE, R.; FRANCOS, J. M. Parametric estimation of multi-dimensional affine
transformations: an exact linear solution. IEEE International Conference on Acoustics,
Speech, and Signal Processing, v. 2, p. ii/861–ii/864, 2005. Nenhuma citação no texto.

KHOSHELHAM, K. Accuracy analysis of kinect depth data. ISPRS - International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, p.
133–138, 2011. Citado na página 14.

MICROSOFT. Kinect for Windows Human Interface Guidelines v1.8.0. 2015. Disponível
em: <https://msdn.microsoft.com/en-us/library/jj663791.aspx>. Acesso em: 20.5.2015.
Citado 2 vezes nas páginas 13 e 14.

MICROSOFT. Kinect for Windows SDK. 2015. Disponível em: <https://msdn.microsoft.
com/enus/library/hh855347.aspx>. Acesso em: 23.5.2015. Citado 2 vezes nas páginas 9
e 16.

MICROSOFT. Programming Kinect for Windows v2 Jump Start. 2015. Dispo-
nível em: <https://www.microsoftvirtualacademy.com/en-US/training-courses/
programming-kinect-for-windows-v2-jump-start-9088?l=Ju7xHKf4_6604984382>. Acesso
em: 18.08.2015. Citado 2 vezes nas páginas 13 e 14.

OPENKINECT. FAQ. 2014. Wiki do OpenKinect. Disponível em: <http:
//openkinect.org/wiki/FAQ>. Acesso em: 23.5.2015. Citado 3 vezes nas páginas 9, 16
e 17.

OPENNI. Reference Guide. 2015. Disponível em: <http://openni.ru/reference-guide/
index.html?t=index.html>. Acesso em: 25.5.2015. Citado 2 vezes nas páginas 9 e 16.

RAKPRAYOON, P. e. a. Kinect-based obstacle detection for manipulator. International
Symposium on System Integration (SII), p. 68–73, 2011. Citado na página 14.

TONG, J. e. a. Scanning 3d full human bodies using kinects. IEEE Transactions on
Visualization and Computer Graphics, p. 643–650, 2012. Citado na página 14.

https://msdn.microsoft.com/en-us/library/jj663791.aspx
https://msdn.microsoft.com/enus/library/hh855347.aspx
https://msdn.microsoft.com/enus/library/hh855347.aspx
https://www.microsoftvirtualacademy.com/en-US/training-courses/programming-kinect-for-windows-v2-jump-start-9088?l=Ju7xHKf4_6604984382
https://www.microsoftvirtualacademy.com/en-US/training-courses/programming-kinect-for-windows-v2-jump-start-9088?l=Ju7xHKf4_6604984382
http://openkinect.org/wiki/FAQ
http://openkinect.org/wiki/FAQ
http://openni.ru/reference-guide/index.html?t=index.html
http://openni.ru/reference-guide/index.html?t=index.html


Referências 43

YU, X. e. a. Children tantrum behaviour analysis based on kinect sensor. Third Chinese
Conference on Intelligent Visual Surveillance (IVS), p. 49–52, 2011. Citado na página 11.



Apêndices



45

APÊNDICE A – Código Fonte: Algoritmo
de Comparação Sequencial

Todo o código está disponível no repositório github.com/renanr/KinectHumanMovementEvaluation.

A.1 Wrapper SDK 1.8
us ing System . C o l l e c t i o n s . Generic ;
us ing K1_8 = Microso f t . Kinect ;
us ing System . Windows . Media . Media3D ;
us ing System ;

namespace KHMESDK1_8
{

pub l i c c l a s s Ske le ton
{

pub l i c Dict ionary<s t r i ng , Point3D> Jo in t s ;

// Empty Constructor
pub l i c Ske le ton ( ) { }

// Constructor from a Kinect SDK 1.8 Ske le ton
pub l i c Ske le ton (K1_8 . Ske le ton sk e l e t on )
{

t h i s . Jo i n t s = new Dict ionary<s t r i ng , Point3D >() ;
f o r each (K1_8 . Jo int j o i n t in sk e l e t on . Jo in t s )
{

i f ( j o i n t . TrackingState != K1_8 . Jo intTrack ingState . NotTracked )
{

t h i s . Jo i n t s . Add( j o i n t . JointType . ToString ( ) , KinV1JointToPoint3D ( j o i n t ) ) ;
}
e l s e
{

Console . WriteLine ( "WARNING: j o i n t " + j o i n t . JointType . ToString ( ) + " not tracked . " ) ;
}

}



APÊNDICE A. Código Fonte: Algoritmo de Comparação Sequencial 46

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Key names f o r j o i n t s are :
" FootRight " , " AnkleRight " , " KneeRight " , " HipRight "
" FootLeft " , " AnkleLeft " , " KneeLeft " , " HipLeft "
" HandRight " , " WristRight " , " ElbowRight " , " ShoulderRight "
" HandLeft " , " WristLeft " , " ElbowLeft " , " Shou lderLe f t "
" HipCenter " , " Spine " , " ShoulderCenter " , " Head "

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
}

// Method to cons t ruc t a Point3D from a Kinect V1 Jo int
pub l i c Point3D KinV1JointToPoint3D (K1_8 . Jo int j o i n t )
{

Point3D point = new Point3D ( j o i n t . Po s i t i on .X, j o i n t . Po s i t i on .Y, j o i n t . Po s i t i on . Z ) ;
r e turn po int ;

}
}

}

A.2 Wrapper SDK 2.0
us ing System . C o l l e c t i o n s . Generic ;
us ing K2_0 = Microso f t . Kinect ;
us ing System . Windows . Media . Media3D ;
us ing System ;

namespace KHMESDK2_0
{

pub l i c c l a s s Ske le ton
{

pub l i c Dict ionary<s t r i ng , Point3D> Jo in t s ;

// Empty Constructor
pub l i c Ske le ton ( ) { }

// Constructor from a Kinect SDK 2.0 Ske le ton
pub l i c Ske le ton (K2_0 . Body body )
{

t h i s . Jo i n t s = new Dict ionary<s t r i ng , Point3D >() ;
f o r each (K2_0 . JointType jo intType in body . Jo in t s . Keys )



APÊNDICE A. Código Fonte: Algoritmo de Comparação Sequencial 47

{
i f ( body . Jo in t s [ jo intType ] . TrackingState != K2_0 . TrackingState . NotTracked )
{

t h i s . Jo i n t s . Add( jo intType . ToString ( ) , KinV2JointToPoint3D ( body . Jo in t s [ jo intType ] ) ) ;
}
e l s e
{

Console . WriteLine ( "WARNING: j o i n t " + jointType . ToString ( ) + " not tracked . " ) ;
}

}
}

// Method to cons t ruc t a Point3D from a Kinect V1 Jo int
pub l i c Point3D KinV2JointToPoint3D (K2_0 . Jo int j o i n t )
{

Point3D point = new Point3D ( j o i n t . Po s i t i on .X, j o i n t . Po s i t i on .Y, j o i n t . Po s i t i on . Z ) ;
r e turn po int ;

}
}

}

A.3 KinectHumanMovementEvaluation.cs
us ing System ;
us ing System . C o l l e c t i o n s . Generic ;
us ing System . Linq ;
us ing System . Windows . Media . Media3D ;
us ing K1_8 = KHMESDK1_8; // wrapper f o r Kinect SDK 1.8

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Key names f o r j o i n t s are :
" FootRight " , " AnkleRight " , " KneeRight " , " HipRight " ,
" FootLeft " , " AnkleLeft " , " KneeLeft " , " HipLeft " ,
" HandRight " , " WristRight " , " ElbowRight " , " ShoulderRight " ,
" HandLeft " , " WristLeft " , " ElbowLeft " , " Shou lderLe f t " ,
" HipCenter " , " Spine " , " ShoulderCenter " , " Head "

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

us ing K2_0 = KHMESDK2_0; // wrapper f o r Kinect SDK 2.0
/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Key names f o r j o i n t s are :



APÊNDICE A. Código Fonte: Algoritmo de Comparação Sequencial 48

" FootRight " , " AnkleRight " , " KneeRight " , " HipRight " ,
" FootLeft " , " AnkleLeft " , " KneeLeft " , " HipLeft " ,
" HandTipRight " , " ThumbRight " ,
" HandRight " , " WristRight " , " ElbowRight " , " ShoulderRight " ,
" HandTipLeft " , " ThumbLeft " ,
" HandLeft " , " WristLeft " , " ElbowLeft " , " Shou lderLe f t " ,
" SpineBase " , " SpineMid " , " SpineShoulder " , " Neck " , " Head "

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

namespace KinectHumanMovementEvaluation
{

pub l i c c l a s s Pose
{

pub l i c Dict ionary<s t r i ng , double> GenericParameters { get ; s e t ; }

// Empty Constructor
pub l i c Pose ( ) { }

// Complete Constructor : sha l low copy o f GenericParameters
pub l i c Pose ( Dict ionary<s t r i ng , double> genParam )
{

t h i s . GenericParameters = genParam ;
}

// Constructor from a Kinect SDK 1.8 Skeleton ,
// the parameters are de f ined as some r e p r e s e n t a t i v e j o i n t ang l e s .
pub l i c Pose (K1_8 . Ske l e ton s )
{

t h i s . GenericParameters = new Dict ionary<s t r i ng , double >() ;

//Knees
i f ( s . Jo in t s . ContainsKey ( " AnkleRight " ) && s . Jo in t s . ContainsKey ( " KneeRight " ) && s . Jo in t s . ContainsKey ( " HipRight " ) )
{

s t r i n g rkn = " rightKneeAngle " ;
double rkv = AuxGeometry . AngleMidPoint ( s . Jo in t s [ " AnkleRight " ] , s . J o i n t s [ " KneeRight " ] , s . J o i n t s [ " HipRight " ] ) ;
t h i s . GenericParameters . Add( rkn , rkv ) ;

}

i f ( s . J o i n t s . ContainsKey ( " AnkleLeft " ) && s . Jo in t s . ContainsKey ( " KneeLeft " ) && s . Jo in t s . ContainsKey ( " HipLeft " ) )



APÊNDICE A. Código Fonte: Algoritmo de Comparação Sequencial 49

{
s t r i n g lkn = " le f tKneeAngle " ;
double lkv = AuxGeometry . AngleMidPoint ( s . Jo in t s [ " AnkleLeft " ] , s . J o i n t s [ " KneeLeft " ] , s . J o in t s [ " HipLeft " ] ) ;
t h i s . GenericParameters . Add( lkn , lkv ) ;

}

//Elbows
i f ( s . J o i n t s . ContainsKey ( " WristRight " ) && s . Jo in t s . ContainsKey ( " ElbowRight " ) && s . Jo in t s . ContainsKey ( " ShoulderRight " ) )
{

s t r i n g ren = " rightElbowAngle " ;
double rev = AuxGeometry . AngleMidPoint ( s . Jo in t s [ " WristRight " ] , s . J o in t s [ " ElbowRight " ] , s . J o i n t s [ " ShoulderRight " ] ) ;
t h i s . GenericParameters . Add( ren , rev ) ;

}

i f ( s . J o i n t s . ContainsKey ( " WristLeft " ) && s . Jo in t s . ContainsKey ( " ElbowLeft " ) && s . Jo in t s . ContainsKey ( " Shou lderLe f t " ) )
{

s t r i n g l en = " le f tElbowAngle " ;
double l ev = AuxGeometry . AngleMidPoint ( s . Jo in t s [ " WristLeft " ] , s . J o i n t s [ " ElbowLeft " ] , s . J o in t s [ " Shou lderLe f t " ] ) ;
t h i s . GenericParameters . Add( len , l ev ) ;

}

//Hands
i f ( s . J o i n t s . ContainsKey ( " HandRight " ) && s . Jo in t s . ContainsKey ( " WristRight " ) && s . Jo in t s . ContainsKey ( " ElbowRight " ) )
{

s t r i n g rhn = " rightHandAngle " ;
double rhv = AuxGeometry . AngleMidPoint ( s . Jo in t s [ " HandRight " ] , s . J o in t s [ " WristRight " ] , s . J o i n t s [ " ElbowRight " ] ) ;
t h i s . GenericParameters . Add( rhn , rhv ) ;

}

i f ( s . J o i n t s . ContainsKey ( " HandLeft " ) && s . Jo in t s . ContainsKey ( " WristLeft " ) && s . Jo in t s . ContainsKey ( " ElbowLeft " ) )
{

s t r i n g lhn = " leftHandAngle " ;
double lhv = AuxGeometry . AngleMidPoint ( s . Jo in t s [ " HandLeft " ] , s . J o i n t s [ " WristLeft " ] , s . J o in t s [ " ElbowLeft " ] ) ;
t h i s . GenericParameters . Add( lhn , lhv ) ;

}

i f ( s . J o i n t s . ContainsKey ( " HandRight " ) && s . Jo in t s . ContainsKey ( " WristRight " ) && s . Jo in t s . ContainsKey ( " ElbowRight " ) && s . Jo in t s . ContainsKey ( " ShoulderRight " ) )
{

s t r i n g rh in = " r i gh tHandInc l i na t i on " ;



APÊNDICE A. Código Fonte: Algoritmo de Comparação Sequencial 50

double rh iv = AuxGeometry . AngleBetweenVectorAndPlan ( s . Jo in t s [ " HandRight " ] , s . J o in t s [ " WristRight " ] , s . J o in t s [ " ElbowRight " ] , s . J o i n t s [ " ShoulderRight " ] ) ;
t h i s . GenericParameters . Add( rhin , rh iv ) ;

}

i f ( s . J o i n t s . ContainsKey ( " HandLeft " ) && s . Jo in t s . ContainsKey ( " WristLeft " ) && s . Jo in t s . ContainsKey ( " ElbowLeft " ) && s . Jo in t s . ContainsKey ( " Shou lderLe f t " ) )
{

s t r i n g l h i n = " l e f t H a n d I n c l i n a t i o n " ;
double l h i v = AuxGeometry . AngleBetweenVectorAndPlan ( s . Jo in t s [ " HandLeft " ] , s . J o in t s [ " WristLeft " ] , s . J o in t s [ " ElbowLeft " ] , s . J o i n t s [ " Shou lderLe f t " ] ) ;
t h i s . GenericParameters . Add( lh in , l h i v ) ;

}

// Feet
i f ( s . J o i n t s . ContainsKey ( " FootRight " ) && s . Jo in t s . ContainsKey ( " AnkleRight " ) && s . Jo in t s . ContainsKey ( " KneeRight " ) )
{

s t r i n g r fn = " r ightFootAngle " ;
double r f v = AuxGeometry . AngleMidPoint ( s . Jo in t s [ " FootRight " ] , s . J o i n t s [ " AnkleRight " ] , s . J o i n t s [ " KneeRight " ] ) ;
t h i s . GenericParameters . Add( rfn , r f v ) ;

}

i f ( s . J o i n t s . ContainsKey ( " FootLeft " ) && s . Jo in t s . ContainsKey ( " AnkleLeft " ) && s . Jo in t s . ContainsKey ( " KneeLeft " ) )
{

s t r i n g l f n = " l e f tFootAng l e " ;
double l f v = AuxGeometry . AngleMidPoint ( s . Jo in t s [ " FootLeft " ] , s . J o i n t s [ " AnkleLeft " ] , s . J o i n t s [ " KneeLeft " ] ) ;
t h i s . GenericParameters . Add( l fn , l f v ) ;

}

i f ( s . J o i n t s . ContainsKey ( " FootRight " ) && s . Jo in t s . ContainsKey ( " AnkleRight " ) && s . Jo in t s . ContainsKey ( " KneeRight " ) && s . Jo in t s . ContainsKey ( " HipRight " ) )
{

s t r i n g r f i n = " r i g h t F o o t I n c l i n a t i o n " ;
double r f i v = AuxGeometry . AngleBetweenVectorAndPlan ( s . Jo in t s [ " FootRight " ] , s . J o i n t s [ " AnkleRight " ] , s . J o i n t s [ " KneeRight " ] , s . J o i n t s [ " HipRight " ] ) ;
t h i s . GenericParameters . Add( r f i n , r f i v ) ;

}

i f ( s . J o i n t s . ContainsKey ( " FootLeft " ) && s . Jo in t s . ContainsKey ( " AnkleLeft " ) && s . Jo in t s . ContainsKey ( " KneeLeft " ) && s . Jo in t s . ContainsKey ( " HipLeft " ) )
{

s t r i n g l f i n = " l e f t F o o t I n c l i n a t i o n " ;
double l f i v = AuxGeometry . AngleBetweenVectorAndPlan ( s . Jo in t s [ " FootLeft " ] , s . J o i n t s [ " AnkleLeft " ] , s . J o in t s [ " KneeLeft " ] , s . J o i n t s [ " HipLeft " ] ) ;
t h i s . GenericParameters . Add( l f i n , l f i v ) ;

}



APÊNDICE A. Código Fonte: Algoritmo de Comparação Sequencial 51

// Legs
i f ( s . J o i n t s . ContainsKey ( " KneeRight " ) && s . Jo in t s . ContainsKey ( " HipRight " ) && s . Jo in t s . ContainsKey ( " HipLeft " ) && s . Jo in t s . ContainsKey ( " HipCenter " ) )
{

s t r i n g r l i n = " r i g h t L e g I n c l i n a t i o n " ;
double r l i v = AuxGeometry . AngleBetweenVectorAndPlan ( s . Jo in t s [ " KneeRight " ] , s . J o in t s [ " HipRight " ] , s . J o in t s [ " HipLeft " ] , s . J o i n t s [ " HipCenter " ] ) ;
t h i s . GenericParameters . Add( r l i n , r l i v ) ;

}

i f ( s . J o i n t s . ContainsKey ( " KneeLeft " ) && s . Jo in t s . ContainsKey ( " HipLeft " ) && s . Jo in t s . ContainsKey ( " HipRight " ) && s . Jo in t s . ContainsKey ( " HipCenter " ) )
{

s t r i n g l l i n = " l e f t L e g I n c l i n a t i o n " ;
double l l i v = AuxGeometry . AngleBetweenVectorAndPlan ( s . Jo in t s [ " KneeLeft " ] , s . J o in t s [ " HipLeft " ] , s . J o i n t s [ " HipRight " ] , s . J o in t s [ " HipCenter " ] ) ;
t h i s . GenericParameters . Add( l l i n , l l i v ) ;

}

i f ( s . J o i n t s . ContainsKey ( " KneeRight " ) && s . Jo in t s . ContainsKey ( " HipRight " ) && s . Jo in t s . ContainsKey ( " HipCenter " ) && s . Jo in t s . ContainsKey ( " HipLeft " ) )
{

s t r i n g r lpn = " rightLegPendulum " ;
double r lpv = AuxGeometry . AngleInPlanBetweenProjectionAndVector ( s . Jo in t s [ " KneeRight " ] , s . J o in t s [ " HipRight " ] , s . J o in t s [ " HipCenter " ] , s . J o i n t s [ " HipLeft " ] ) ;
t h i s . GenericParameters . Add( rlpn , r lpv ) ;

}

i f ( s . J o i n t s . ContainsKey ( " KneeLeft " ) && s . Jo in t s . ContainsKey ( " HipLeft " ) && s . Jo in t s . ContainsKey ( " HipCenter " ) && s . Jo in t s . ContainsKey ( " HipRight " ) )
{

s t r i n g l l p n = " leftLegPendulum " ;
double l l p v = AuxGeometry . AngleInPlanBetweenProjectionAndVector ( s . Jo in t s [ " KneeLeft " ] , s . J o i n t s [ " HipLeft " ] , s . J o in t s [ " HipCenter " ] , s . J o i n t s [ " HipRight " ] ) ;
t h i s . GenericParameters . Add( l lpn , l l p v ) ;

}

//Arms
i f ( s . J o i n t s . ContainsKey ( " ElbowRight " ) && s . Jo in t s . ContainsKey ( " ShoulderRight " ) && s . Jo in t s . ContainsKey ( " ShoulderCenter " ) )
{

s t r i n g ran = " rightArmAngle " ;
double rav = AuxGeometry . AngleMidPoint ( s . Jo in t s [ " ElbowRight " ] , s . J o i n t s [ " ShoulderRight " ] , s . J o i n t s [ " ShoulderCenter " ] ) ;
t h i s . GenericParameters . Add( ran , rav ) ;

}

i f ( s . J o i n t s . ContainsKey ( " ElbowLeft " ) && s . Jo in t s . ContainsKey ( " Shou lderLe f t " ) && s . Jo in t s . ContainsKey ( " ShoulderCenter " ) )



APÊNDICE A. Código Fonte: Algoritmo de Comparação Sequencial 52

{
s t r i n g lan = " leftArmAngle " ;
double lav = AuxGeometry . AngleMidPoint ( s . Jo in t s [ " ElbowLeft " ] , s . J o in t s [ " Shou lderLe f t " ] , s . J o i n t s [ " ShoulderCenter " ] ) ;
t h i s . GenericParameters . Add( lan , lav ) ;

}

i f ( s . J o i n t s . ContainsKey ( " ElbowRight " ) && s . Jo in t s . ContainsKey ( " ShoulderRight " ) && s . Jo in t s . ContainsKey ( " Shou lderLe f t " ) && s . Jo in t s . ContainsKey ( " ShoulderCenter " ) )
{

s t r i n g ra in = " r i ghtArmInc l ina t i on " ;
double r a i v = AuxGeometry . AngleBetweenVectorAndPlan ( s . Jo in t s [ " ElbowRight " ] , s . J o i n t s [ " ShoulderRight " ] , s . J o i n t s [ " Shou lderLe f t " ] , s . J o i n t s [ " ShoulderCenter " ] ) ;
t h i s . GenericParameters . Add( ra in , r a i v ) ;

}

i f ( s . J o i n t s . ContainsKey ( " ElbowLeft " ) && s . Jo in t s . ContainsKey ( " Shou lderLe f t " ) && s . Jo in t s . ContainsKey ( " ShoulderRight " ) && s . Jo in t s . ContainsKey ( " ShoulderCenter " ) )
{

s t r i n g l a i n = " l e f tA rmInc l i n a t i on " ;
double l a i v = AuxGeometry . AngleBetweenVectorAndPlan ( s . Jo in t s [ " ElbowLeft " ] , s . J o i n t s [ " Shou lderLe f t " ] , s . J o in t s [ " ShoulderRight " ] , s . J o in t s [ " ShoulderCenter " ] ) ;
t h i s . GenericParameters . Add( l a in , l a i v ) ;

}

i f ( s . J o i n t s . ContainsKey ( " WristRight " ) && s . Jo in t s . ContainsKey ( " ElbowRight " ) && s . Jo in t s . ContainsKey ( " ShoulderRight " ) && s . Jo in t s . ContainsKey ( " ShoulderCenter " ) )
{

s t r i n g ratn = " rightArmTwist " ;
double ratv = AuxGeometry . AngleBetweenVectorAndPlan ( s . Jo in t s [ " WristRight " ] , s . J o i n t s [ " ElbowRight " ] , s . J o in t s [ " ShoulderRight " ] , s . J o i n t s [ " ShoulderCenter " ] ) ;
t h i s . GenericParameters . Add( ratn , ratv ) ;

}

i f ( s . J o i n t s . ContainsKey ( " WristLeft " ) && s . Jo in t s . ContainsKey ( " ElbowLeft " ) && s . Jo in t s . ContainsKey ( " Shou lderLe f t " ) && s . Jo in t s . ContainsKey ( " ShoulderCenter " ) )
{

s t r i n g l a tn = " leftArmTwistn " ;
double l a t v = AuxGeometry . AngleBetweenVectorAndPlan ( s . Jo in t s [ " WristLeft " ] , s . J o in t s [ " ElbowLeft " ] , s . J o i n t s [ " Shou lderLe f t " ] , s . J o in t s [ " ShoulderCenter " ] ) ;
t h i s . GenericParameters . Add( latn , l a t v ) ;

}

// Torso
i f ( s . J o i n t s . ContainsKey ( " HipCenter " ) && s . Jo in t s . ContainsKey ( " Spine " ) && s . Jo in t s . ContainsKey ( " ShoulderCenter " ) )
{

s t r i n g tn = " torsoAngle " ;
double tv = AuxGeometry . AngleMidPoint ( s . Jo in t s [ " HipCenter " ] , s . J o in t s [ " Spine " ] , s . J o i n t s [ " ShoulderCenter " ] ) ;



APÊNDICE A. Código Fonte: Algoritmo de Comparação Sequencial 53

t h i s . GenericParameters . Add( tn , tv ) ;
}

i f ( s . J o i n t s . ContainsKey ( " HipRight " ) && s . Jo in t s . ContainsKey ( " HipLeft " ) && s . Jo in t s . ContainsKey ( " HipCenter " ) && s . Jo in t s . ContainsKey ( " ShoulderRight " ) && s . Jo in t s . ContainsKey ( " Shou lderLe f t " ) && s . Jo in t s . ContainsKey ( " ShoulderCenter " ) )
{

s t r i n g ttn = " torsoTwist " ;
double t tv = AuxGeometry . AngleBetweenPlanes ( s . Jo in t s [ " HipRight " ] , s . J o i n t s [ " HipLeft " ] , s . J o in t s [ " HipCenter " ] , s . J o i n t s [ " ShoulderRight " ] , s . J o i n t s [ " Shou lderLe f t " ] , s . J o i n t s [ " ShoulderCenter " ] ) ;
t h i s . GenericParameters . Add( ttn , t tv ) ;

}

i f ( s . J o i n t s . ContainsKey ( " ShoulderCenter " ) && s . Jo in t s . ContainsKey ( " Spine " ) && s . Jo in t s . ContainsKey ( " HipCenter " ) && s . Jo in t s . ContainsKey ( " HipRight " ) && s . Jo in t s . ContainsKey ( " HipLeft " ) )
{

s t r i n g tpn = " torsoPendulum " ;
double tpv = AuxGeometry . AngleInPlanBetweenProject ions ( s . Jo in t s [ " ShoulderCenter " ] , s . J o i n t s [ " Spine " ] , s . J o i n t s [ " HipCenter " ] , s . J o in t s [ " HipRight " ] , s . J o in t s [ " HipLeft " ] ) ;
t h i s . GenericParameters . Add( tpn , tpv ) ;

}

//Head
i f ( s . J o i n t s . ContainsKey ( " Spine " ) && s . Jo in t s . ContainsKey ( " ShoulderCenter " ) && s . Jo in t s . ContainsKey ( " Head " ) )
{

s t r i n g hn = " headAngle " ;
double hv = AuxGeometry . AngleMidPoint ( s . Jo in t s [ " Spine " ] , s . J o i n t s [ " ShoulderCenter " ] , s . J o in t s [ " Head " ] ) ;
t h i s . GenericParameters . Add(hn , hv ) ;

}

i f ( s . J o i n t s . ContainsKey ( " Head " ) && s . Jo in t s . ContainsKey ( " ShoulderRight " ) && s . Jo in t s . ContainsKey ( " Shou lderLe f t " ) && s . Jo in t s . ContainsKey ( " ShoulderCenter " ) && s . Jo in t s . ContainsKey ( " ShoulderCenter " ) )
{

s t r i n g hpn = " headPendulum " ;
Vector3D vec1 = Point3D . Subtract ( AuxGeometry . ProjectPointOntoPlan ( s . Jo in t s [ " Head " ] , s . J o i n t s [ " ShoulderRight " ] , s . J o i n t s [ " Shou lderLe f t " ] , s . J o in t s [ " ShoulderCenter " ] ) , s . J o in t s [ " ShoulderCenter " ] ) ;
Vector3D vec2 = Point3D . Subtract ( s . Jo in t s [ " Spine " ] , s . J o in t s [ " ShoulderCenter " ] ) ;
double hpv = Vector3D . AngleBetween ( vec1 , vec2 ) ;
t h i s . GenericParameters . Add(hpn , hpv ) ;

}

// V e r t i c a l i n c l i n a t i o n
i f ( s . J o i n t s . ContainsKey ( " Spine " ) && s . Jo in t s . ContainsKey ( " ShoulderCenter " ) )
{

s t r i n g vn = " v e r t i c a l I n c l i n a t i o n " ;
double vv = AuxGeometry . AngleBetweenVectorAndVertical ( s . Jo in t s [ " Spine " ] , s . J o i n t s [ " ShoulderCenter " ] ) ;



APÊNDICE A. Código Fonte: Algoritmo de Comparação Sequencial 54

t h i s . GenericParameters . Add(vn , vv ) ;
}

}

// Constructor from a Kinect SDK 2.0 Skeleton ,
// the parameters are de f ined as some r e p r e s e n t a t i v e j o i n t ang l e s .
pub l i c Pose (K2_0 . Ske l e ton s )
{

t h i s . GenericParameters = new Dict ionary<s t r i ng , double >() ;

//Knees
i f ( s . J o i n t s . ContainsKey ( " AnkleRight " ) && s . Jo in t s . ContainsKey ( " KneeRight " ) && s . Jo in t s . ContainsKey ( " HipRight " ) )
{

s t r i n g rkn = " rightKneeAngle " ;
double rkv = AuxGeometry . AngleMidPoint ( s . Jo in t s [ " AnkleRight " ] , s . J o i n t s [ " KneeRight " ] , s . J o i n t s [ " HipRight " ] ) ;
t h i s . GenericParameters . Add( rkn , rkv ) ;

}

i f ( s . J o i n t s . ContainsKey ( " AnkleLeft " ) && s . Jo in t s . ContainsKey ( " KneeLeft " ) && s . Jo in t s . ContainsKey ( " HipLeft " ) )
{

s t r i n g lkn = " le f tKneeAngle " ;
double lkv = AuxGeometry . AngleMidPoint ( s . Jo in t s [ " AnkleLeft " ] , s . J o i n t s [ " KneeLeft " ] , s . J o in t s [ " HipLeft " ] ) ;
t h i s . GenericParameters . Add( lkn , lkv ) ;

}

//Elbows
i f ( s . J o i n t s . ContainsKey ( " WristRight " ) && s . Jo in t s . ContainsKey ( " ElbowRight " ) && s . Jo in t s . ContainsKey ( " ShoulderRight " ) )
{

s t r i n g ren = " rightElbowAngle " ;
double rev = AuxGeometry . AngleMidPoint ( s . Jo in t s [ " WristRight " ] , s . J o in t s [ " ElbowRight " ] , s . J o i n t s [ " ShoulderRight " ] ) ;
t h i s . GenericParameters . Add( ren , rev ) ;

}

i f ( s . J o i n t s . ContainsKey ( " WristLeft " ) && s . Jo in t s . ContainsKey ( " ElbowLeft " ) && s . Jo in t s . ContainsKey ( " Shou lderLe f t " ) )
{

s t r i n g l en = " le f tElbowAngle " ;
double l ev = AuxGeometry . AngleMidPoint ( s . Jo in t s [ " WristLeft " ] , s . J o i n t s [ " ElbowLeft " ] , s . J o in t s [ " Shou lderLe f t " ] ) ;
t h i s . GenericParameters . Add( len , l ev ) ;

}



APÊNDICE A. Código Fonte: Algoritmo de Comparação Sequencial 55

//Hands
i f ( s . J o i n t s . ContainsKey ( " HandRight " ) && s . Jo in t s . ContainsKey ( " WristRight " ) && s . Jo in t s . ContainsKey ( " ElbowRight " ) )
{

s t r i n g rhn = " rightHandAngle " ;
double rhv = AuxGeometry . AngleMidPoint ( s . Jo in t s [ " HandRight " ] , s . J o in t s [ " WristRight " ] , s . J o i n t s [ " ElbowRight " ] ) ;
t h i s . GenericParameters . Add( rhn , rhv ) ;

}

i f ( s . J o i n t s . ContainsKey ( " HandLeft " ) && s . Jo in t s . ContainsKey ( " WristLeft " ) && s . Jo in t s . ContainsKey ( " ElbowLeft " ) )
{

s t r i n g lhn = " leftHandAngle " ;
double lhv = AuxGeometry . AngleMidPoint ( s . Jo in t s [ " HandLeft " ] , s . J o i n t s [ " WristLeft " ] , s . J o in t s [ " ElbowLeft " ] ) ;
t h i s . GenericParameters . Add( lhn , lhv ) ;

}

i f ( s . J o i n t s . ContainsKey ( " HandRight " ) && s . Jo in t s . ContainsKey ( " WristRight " ) && s . Jo in t s . ContainsKey ( " ElbowRight " ) && s . Jo in t s . ContainsKey ( " ShoulderRight " ) )
{

s t r i n g rh in = " r i gh tHandInc l i na t i on " ;
double rh iv = AuxGeometry . AngleBetweenVectorAndPlan ( s . Jo in t s [ " HandRight " ] , s . J o in t s [ " WristRight " ] , s . J o in t s [ " ElbowRight " ] , s . J o i n t s [ " ShoulderRight " ] ) ;
t h i s . GenericParameters . Add( rhin , rh iv ) ;

}

i f ( s . J o i n t s . ContainsKey ( " HandLeft " ) && s . Jo in t s . ContainsKey ( " WristLeft " ) && s . Jo in t s . ContainsKey ( " ElbowLeft " ) && s . Jo in t s . ContainsKey ( " Shou lderLe f t " ) )
{

s t r i n g l h i n = " l e f t H a n d I n c l i n a t i o n " ;
double l h i v = AuxGeometry . AngleBetweenVectorAndPlan ( s . Jo in t s [ " HandLeft " ] , s . J o in t s [ " WristLeft " ] , s . J o in t s [ " ElbowLeft " ] , s . J o i n t s [ " Shou lderLe f t " ] ) ;
t h i s . GenericParameters . Add( lh in , l h i v ) ;

}

// Feet
i f ( s . J o i n t s . ContainsKey ( " FootRight " ) && s . Jo in t s . ContainsKey ( " AnkleRight " ) && s . Jo in t s . ContainsKey ( " KneeRight " ) )
{

s t r i n g r fn = " r ightFootAngle " ;
double r f v = AuxGeometry . AngleMidPoint ( s . Jo in t s [ " FootRight " ] , s . J o i n t s [ " AnkleRight " ] , s . J o i n t s [ " KneeRight " ] ) ;
t h i s . GenericParameters . Add( rfn , r f v ) ;

}

i f ( s . J o i n t s . ContainsKey ( " FootLeft " ) && s . Jo in t s . ContainsKey ( " AnkleLeft " ) && s . Jo in t s . ContainsKey ( " KneeLeft " ) )



APÊNDICE A. Código Fonte: Algoritmo de Comparação Sequencial 56

{
s t r i n g l f n = " l e f tFootAng l e " ;
double l f v = AuxGeometry . AngleMidPoint ( s . Jo in t s [ " FootLeft " ] , s . J o i n t s [ " AnkleLeft " ] , s . J o i n t s [ " KneeLeft " ] ) ;
t h i s . GenericParameters . Add( l fn , l f v ) ;

}

i f ( s . J o i n t s . ContainsKey ( " FootRight " ) && s . Jo in t s . ContainsKey ( " AnkleRight " ) && s . Jo in t s . ContainsKey ( " KneeRight " ) && s . Jo in t s . ContainsKey ( " HipRight " ) )
{

s t r i n g r f i n = " r i g h t F o o t I n c l i n a t i o n " ;
double r f i v = AuxGeometry . AngleBetweenVectorAndPlan ( s . Jo in t s [ " FootRight " ] , s . J o i n t s [ " AnkleRight " ] , s . J o i n t s [ " KneeRight " ] , s . J o i n t s [ " HipRight " ] ) ;
t h i s . GenericParameters . Add( r f i n , r f i v ) ;

}

i f ( s . J o i n t s . ContainsKey ( " FootLeft " ) && s . Jo in t s . ContainsKey ( " AnkleLeft " ) && s . Jo in t s . ContainsKey ( " KneeLeft " ) && s . Jo in t s . ContainsKey ( " HipLeft " ) )
{

s t r i n g l f i n = " l e f t F o o t I n c l i n a t i o n " ;
double l f i v = AuxGeometry . AngleBetweenVectorAndPlan ( s . Jo in t s [ " FootLeft " ] , s . J o i n t s [ " AnkleLeft " ] , s . J o in t s [ " KneeLeft " ] , s . J o i n t s [ " HipLeft " ] ) ;
t h i s . GenericParameters . Add( l f i n , l f i v ) ;

}

// Legs
i f ( s . J o i n t s . ContainsKey ( " KneeRight " ) && s . Jo in t s . ContainsKey ( " HipRight " ) && s . Jo in t s . ContainsKey ( " HipLeft " ) && s . Jo in t s . ContainsKey ( " SpineBase " ) )
{

s t r i n g r l i n = " r i g h t L e g I n c l i n a t i o n " ;
double r l i v = AuxGeometry . AngleBetweenVectorAndPlan ( s . Jo in t s [ " KneeRight " ] , s . J o in t s [ " HipRight " ] , s . J o in t s [ " HipLeft " ] , s . J o i n t s [ " SpineBase " ] ) ;
t h i s . GenericParameters . Add( r l i n , r l i v ) ;

}

i f ( s . J o i n t s . ContainsKey ( " KneeLeft " ) && s . Jo in t s . ContainsKey ( " HipLeft " ) && s . Jo in t s . ContainsKey ( " HipRight " ) && s . Jo in t s . ContainsKey ( " SpineBase " ) )
{

s t r i n g l l i n = " l e f t L e g I n c l i n a t i o n " ;
double l l i v = AuxGeometry . AngleBetweenVectorAndPlan ( s . Jo in t s [ " KneeLeft " ] , s . J o in t s [ " HipLeft " ] , s . J o i n t s [ " HipRight " ] , s . J o in t s [ " SpineBase " ] ) ;
t h i s . GenericParameters . Add( l l i n , l l i v ) ;

}

i f ( s . J o i n t s . ContainsKey ( " KneeRight " ) && s . Jo in t s . ContainsKey ( " HipRight " ) && s . Jo in t s . ContainsKey ( " SpineBase " ) && s . Jo in t s . ContainsKey ( " HipLeft " ) )
{

s t r i n g r lpn = " rightLegPendulum " ;
double r lpv = AuxGeometry . AngleInPlanBetweenProjectionAndVector ( s . Jo in t s [ " KneeRight " ] , s . J o in t s [ " HipRight " ] , s . J o in t s [ " SpineBase " ] , s . J o in t s [ " HipLeft " ] ) ;



APÊNDICE A. Código Fonte: Algoritmo de Comparação Sequencial 57

t h i s . GenericParameters . Add( rlpn , r lpv ) ;
}

i f ( s . J o i n t s . ContainsKey ( " KneeLeft " ) && s . Jo in t s . ContainsKey ( " HipLeft " ) && s . Jo in t s . ContainsKey ( " SpineBase " ) && s . Jo in t s . ContainsKey ( " HipRight " ) )
{

s t r i n g l l p n = " leftLegPendulum " ;
double l l p v = AuxGeometry . AngleInPlanBetweenProjectionAndVector ( s . Jo in t s [ " KneeLeft " ] , s . J o i n t s [ " HipLeft " ] , s . J o in t s [ " SpineBase " ] , s . J o in t s [ " HipRight " ] ) ;
t h i s . GenericParameters . Add( l lpn , l l p v ) ;

}

//Arms
i f ( s . J o i n t s . ContainsKey ( " ElbowRight " ) && s . Jo in t s . ContainsKey ( " ShoulderRight " ) && s . Jo in t s . ContainsKey ( " SpineShoulder " ) )
{

s t r i n g ran = " rightArmAngle " ;
double rav = AuxGeometry . AngleMidPoint ( s . Jo in t s [ " ElbowRight " ] , s . J o i n t s [ " ShoulderRight " ] , s . J o i n t s [ " SpineShoulder " ] ) ;
t h i s . GenericParameters . Add( ran , rav ) ;

}

i f ( s . J o i n t s . ContainsKey ( " ElbowLeft " ) && s . Jo in t s . ContainsKey ( " Shou lderLe f t " ) && s . Jo in t s . ContainsKey ( " SpineShoulder " ) )
{

s t r i n g lan = " leftArmAngle " ;
double lav = AuxGeometry . AngleMidPoint ( s . Jo in t s [ " ElbowLeft " ] , s . J o in t s [ " Shou lderLe f t " ] , s . J o i n t s [ " SpineShoulder " ] ) ;
t h i s . GenericParameters . Add( lan , lav ) ;

}

i f ( s . J o i n t s . ContainsKey ( " ElbowRight " ) && s . Jo in t s . ContainsKey ( " ShoulderRight " ) && s . Jo in t s . ContainsKey ( " Shou lderLe f t " ) && s . Jo in t s . ContainsKey ( " SpineShoulder " ) )
{

s t r i n g ra in = " r i ghtArmInc l ina t i on " ;
double r a i v = AuxGeometry . AngleBetweenVectorAndPlan ( s . Jo in t s [ " ElbowRight " ] , s . J o i n t s [ " ShoulderRight " ] , s . J o i n t s [ " Shou lderLe f t " ] , s . J o i n t s [ " SpineShoulder " ] ) ;
t h i s . GenericParameters . Add( ra in , r a i v ) ;

}

i f ( s . J o i n t s . ContainsKey ( " ElbowLeft " ) && s . Jo in t s . ContainsKey ( " Shou lderLe f t " ) && s . Jo in t s . ContainsKey ( " ShoulderRight " ) && s . Jo in t s . ContainsKey ( " SpineShoulder " ) )
{

s t r i n g l a i n = " l e f tA rmInc l i n a t i on " ;
double l a i v = AuxGeometry . AngleBetweenVectorAndPlan ( s . Jo in t s [ " ElbowLeft " ] , s . J o i n t s [ " Shou lderLe f t " ] , s . J o in t s [ " ShoulderRight " ] , s . J o in t s [ " SpineShoulder " ] ) ;
t h i s . GenericParameters . Add( l a in , l a i v ) ;

}



APÊNDICE A. Código Fonte: Algoritmo de Comparação Sequencial 58

i f ( s . J o i n t s . ContainsKey ( " WristRight " ) && s . Jo in t s . ContainsKey ( " ElbowRight " ) && s . Jo in t s . ContainsKey ( " ShoulderRight " ) && s . Jo in t s . ContainsKey ( " SpineShoulder " ) )
{

s t r i n g ratn = " rightArmTwist " ;
double ratv = AuxGeometry . AngleBetweenVectorAndPlan ( s . Jo in t s [ " WristRight " ] , s . J o i n t s [ " ElbowRight " ] , s . J o in t s [ " ShoulderRight " ] , s . J o i n t s [ " SpineShoulder " ] ) ;
t h i s . GenericParameters . Add( ratn , ratv ) ;

}

i f ( s . J o i n t s . ContainsKey ( " WristLeft " ) && s . Jo in t s . ContainsKey ( " ElbowLeft " ) && s . Jo in t s . ContainsKey ( " Shou lderLe f t " ) && s . Jo in t s . ContainsKey ( " SpineShoulder " ) )
{

s t r i n g l a tn = " leftArmTwistn " ;
double l a t v = AuxGeometry . AngleBetweenVectorAndPlan ( s . Jo in t s [ " WristLeft " ] , s . J o in t s [ " ElbowLeft " ] , s . J o i n t s [ " Shou lderLe f t " ] , s . J o in t s [ " SpineShoulder " ] ) ;
t h i s . GenericParameters . Add( latn , l a t v ) ;

}

// Torso
i f ( s . J o i n t s . ContainsKey ( " SpineBase " ) && s . Jo in t s . ContainsKey ( " SpineMid " ) && s . Jo in t s . ContainsKey ( " SpineShoulder " ) )
{

s t r i n g tn = " torsoAngle " ;
double tv = AuxGeometry . AngleMidPoint ( s . Jo in t s [ " SpineBase " ] , s . J o i n t s [ " SpineMid " ] , s . J o i n t s [ " SpineShoulder " ] ) ;
t h i s . GenericParameters . Add( tn , tv ) ;

}

i f ( s . J o i n t s . ContainsKey ( " HipRight " ) && s . Jo in t s . ContainsKey ( " HipLeft " ) && s . Jo in t s . ContainsKey ( " SpineBase " ) && s . Jo in t s . ContainsKey ( " ShoulderRight " ) && s . Jo in t s . ContainsKey ( " Shou lderLe f t " ) && s . Jo in t s . ContainsKey ( " SpineShoulder " ) )
{

s t r i n g ttn = " torsoTwist " ;
double t tv = AuxGeometry . AngleBetweenPlanes ( s . Jo in t s [ " HipRight " ] , s . J o i n t s [ " HipLeft " ] , s . J o in t s [ " SpineBase " ] , s . J o in t s [ " ShoulderRight " ] , s . J o in t s [ " Shou lderLe f t " ] , s . J o i n t s [ " SpineShoulder " ] ) ;
t h i s . GenericParameters . Add( ttn , t tv ) ;

}

i f ( s . J o i n t s . ContainsKey ( " SpineShoulder " ) && s . Jo in t s . ContainsKey ( " SpineMid " ) && s . Jo in t s . ContainsKey ( " SpineBase " ) && s . Jo in t s . ContainsKey ( " HipRight " ) && s . Jo in t s . ContainsKey ( " HipLeft " ) )
{

s t r i n g tpn = " torsoPendulum " ;
double tpv = AuxGeometry . AngleInPlanBetweenProject ions ( s . Jo in t s [ " SpineShoulder " ] , s . J o i n t s [ " SpineMid " ] , s . J o i n t s [ " SpineBase " ] , s . J o i n t s [ " HipRight " ] , s . J o i n t s [ " HipLeft " ] ) ;
t h i s . GenericParameters . Add( tpn , tpv ) ;

}

//Neck
i f ( s . J o i n t s . ContainsKey ( " SpineMid " ) && s . Jo in t s . ContainsKey ( " SpineShoulder " ) && s . Jo in t s . ContainsKey ( " Neck " ) )
{



APÊNDICE A. Código Fonte: Algoritmo de Comparação Sequencial 59

s t r i n g nn = " neckAngle " ;
double nv = AuxGeometry . AngleMidPoint ( s . Jo in t s [ " SpineMid " ] , s . J o in t s [ " SpineShoulder " ] , s . J o i n t s [ " Neck " ] ) ;
t h i s . GenericParameters . Add(nn , nv ) ;

}

//Head
i f ( s . J o i n t s . ContainsKey ( " SpineShoulder " ) && s . Jo in t s . ContainsKey ( " Neck " ) && s . Jo in t s . ContainsKey ( " Head " ) )
{

s t r i n g hn = " headAngle " ;
double hv = AuxGeometry . AngleMidPoint ( s . Jo in t s [ " SpineShoulder " ] , s . J o in t s [ " Neck " ] , s . J o in t s [ " Head " ] ) ;
t h i s . GenericParameters . Add(hn , hv ) ;

}

i f ( s . J o i n t s . ContainsKey ( " Head " ) && s . Jo in t s . ContainsKey ( " ShoulderRight " ) && s . Jo in t s . ContainsKey ( " Shou lderLe f t " ) && s . Jo in t s . ContainsKey ( " SpineShoulder " ) && s . Jo in t s . ContainsKey ( " SpineMid " ) )
{

s t r i n g hpn = " headPendulum " ;
Vector3D vec1 = Point3D . Subtract ( AuxGeometry . ProjectPointOntoPlan ( s . Jo in t s [ " Head " ] , s . J o i n t s [ " ShoulderRight " ] , s . J o i n t s [ " Shou lderLe f t " ] , s . J o in t s [ " SpineShoulder " ] ) , s . J o i n t s [ " SpineShoulder " ] ) ;
Vector3D vec2 = Point3D . Subtract ( s . Jo in t s [ " SpineMid " ] , s . J o in t s [ " SpineShoulder " ] ) ;
double hpv = Vector3D . AngleBetween ( vec1 , vec2 ) ;
t h i s . GenericParameters . Add(hpn , hpv ) ;

}

// V e r t i c a l i n c l i n a t i o n
i f ( s . J o i n t s . ContainsKey ( " SpineMid " ) && s . Jo in t s . ContainsKey ( " SpineShoulder " ) )
{

s t r i n g vn = " v e r t i c a l I n c l i n a t i o n " ;
double vv = AuxGeometry . AngleBetweenVectorAndVertical ( s . Jo in t s [ " SpineMid " ] , s . J o i n t s [ " SpineShoulder " ] ) ;
t h i s . GenericParameters . Add(vn , vv ) ;

}
}

}

pub l i c c l a s s Movement
{

pub l i c L i s t <Pose> Poses { get ; s e t ; }

// Empty Constructor
pub l i c Movement ( ) { }



APÊNDICE A. Código Fonte: Algoritmo de Comparação Sequencial 60

// Constructor that reads from a . txt f i l e
// Each parameter must be on a d i f f e r e n t l i n e , i t s d i f f e r e n t temporal va lue s separated by whi tespaces
pub l i c Movement( s t r i n g path )
{

s t r i n g [ ] l i n e s = System . IO . F i l e . ReadAllLines ( path ) ;
double [ ] [ ] doubleValues = new double [ l i n e s . Count ( ) ] [ ] ;
i n t nbOfParams = l i n e s . Count ( ) ;
i n t nbOfInstants = 0 ;

f o r ( i n t j = 0 ; j < nbOfParams ; j++)
{

s t r i n g [ ] s t r i ngVa lue s = l i n e s [ j ] . S p l i t ( ’ ’ ) ;
nbOfInstants = s t r i ngVa lue s . Count ( ) − 1 ;

doubleValues [ j ] = new double [ nbOfInstants + 1 ] ;
f o r ( i n t i = 0 ; i < nbOfInstants ; i++) // d i s c a rd s l a s t va lue as i t i s empty
{

doubleValues [ j ] [ i ] = Convert . ToDouble ( s t r i ngVa lue s [ i ] , System . G loba l i z a t i on . Cu l ture In fo . Invar i antCu l ture ) ;
}

}

t h i s . Poses = new List <Pose >() ;

f o r ( i n t i = 0 ; i < nbOfInstants ; i++)
{

Pose pose = new Pose ( ) ;
pose . GenericParameters = new Dict ionary<s t r i ng , double >() ;

f o r ( i n t j = 0 ; j < nbOfParams ; j++)
{

s t r i n g name = " Parameter " + j ;
pose . GenericParameters . Add(name , doubleValues [ j ] [ i ] ) ;

}

t h i s . Poses . Add( pose ) ;
}

}

// Constructor that r e c e i v e s a l i s t o f Poses



APÊNDICE A. Código Fonte: Algoritmo de Comparação Sequencial 61

pub l i c Movement( Lis t <Pose> poses )
{

t h i s . Poses = new List <Pose >() ;

f o r each ( Pose pose in poses )
{

t h i s . Poses . Add( pose ) ;
}

}
}

pub l i c s t a t i c c l a s s Evaluat ion
{

/* Spheres Method f o r two given poses.−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Spheres Method f o r two given poses .
Returns p o s i t i v e or ze ro f l o a t as a s co r e f o r su c c e s s or negat ive f o r f a i l u r e .
Score r e p r e s e n t s r a t i o d i s t ( attempt , standard )/ minDist .

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
pub l i c s t a t i c double Spheres ( Pose standard , Pose attempt , double minRadius , double minScore )
{

double s co r e = 0 ;

i f ( standard . GenericParameters . Count != attempt . GenericParameters . Count )
{

s co r e = −1;
Console . WriteLine ( "FAILURE: poses do not have same number o f e lements " ) ;

}

f o r each ( KeyValuePair<s t r i ng , double> parameter in standard . GenericParameters )
{

i f ( ! attempt . GenericParameters . ContainsKey ( parameter . Key ) )
{

s co r e = −1;
Console . WriteLine ( "FAILURE: attempt pose does not have parameter " + parameter . Key ) ;

}
}

i f ( s c o r e > −1)
{



APÊNDICE A. Código Fonte: Algoritmo de Comparação Sequencial 62

double d i s t ance = AuxGeometry . EuclideanNorm ( standard , attempt ) ;
i f ( d i s t anc e < minRadius )
{

s co r e = 1 ;
Console . WriteLine ( "TOTAL SUCCESS " ) ;

}
e l s e
{

s co r e = minRadius / d i s t ance ;
i f ( s c o r e < minScore )
{

s co r e = −1;
Console . WriteLine ( "FAILURE: minimum d i s t anc e was not achieved . " ) ;

}
}

}

re turn s co r e ;
}

/* Spheres Method f o r two given movements.−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Returns p o s i t i v e or ze ro f l o a t as a s co r e f o r su c c e s s or negat ive f o r f a i l u r e .
Score r e p r e s e n t s average o f a l l poses ’ s co re s , each one i n d i c a t i n g how many s t ep s
were needed to i n c r e a s e the rad iu s u n t i l the sphere conta ined the attempt pose .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
pub l i c s t a t i c double Spheres (Movement standard , Movement attempt , double minRadius , double radiusStep , double minScore , double s coreStep )
{

double f i n a l S c o r e = 0 ; // f i n a l s c o r e f o r complete movement
double r_n = minRadius ;
i n t currentPoseIndex = 0 ;

// Reads u n t i l ’ attempt ’ en t e r s the f i r s t sphere
f o r ( ; currentPoseIndex < attempt . Poses . Count &&

! I s InSphere ( attempt . Poses [ currentPoseIndex ] , standard . Poses [ 0 ] , r_n ) ; currentPoseIndex++) { }
// Checks i f ’ attempt ’ s t i l l has poses to be used
i f ( ! ( currentPoseIndex < attempt . Poses . Count ) )
{

Console . WriteLine ( "FAILURE: Never entered the f i r s t sphere " ) ;
r e turn −1.0;



APÊNDICE A. Código Fonte: Algoritmo de Comparação Sequencial 63

}

// Reads u n t i l ’ attempt ’ l e a v e s f i r s t sphere
f o r ( ; currentPoseIndex < attempt . Poses . Count &&

Is InSphere ( attempt . Poses [ currentPoseIndex ] , standard . Poses [ 0 ] , r_n ) ; currentPoseIndex++) { }
// Checks i f ’ attempt ’ s t i l l has poses to be used
i f ( ! ( currentPoseIndex < attempt . Poses . Count ) )
{

Console . WriteLine ( "FAILURE: Never l e f t the f i r s t sphere " ) ;
r e turn −1.0;

}

bool i s InNextSphere = f a l s e ;

double s co r e ; // s co r e between sphere s
Pose midPose ; // a u x i l i a r y v a r i a b l e

f o r ( i n t j = 0 ;
currentPoseIndex < attempt . Poses . Count ( ) &&
j < standard . Poses . Count ; j++)

{
s co r e = 1 ;
midPose = MiddlePose ( standard . Poses [ j ] , standard . Poses [ j + 1 ] ) ;

// Reads u n t i l ’ attempt ’ en t e r s next sphere or minimum accuracy i s not s a t i s f i e d
f o r ( ; currentPoseIndex < attempt . Poses . Count &&
! I s InSphere ( attempt . Poses [ currentPoseIndex ] , standard . Poses [ j +1] , r_n ) ; currentPoseIndex++)
{

// I n c r e a s e s rad iu s o f t r a n s i t i o n sphere u n t i l ’ attempt ’ i s i n s i d e or minimum accuracy i s not s a t i s f i e d
f o r ( ; ! I s InSphere ( attempt . Poses [ currentPoseIndex ] , midPose , Trans i t ionRadius ( standard . Poses [ j ] , standard . Poses [ j + 1 ] , r_n ) ) ;

s c o r e = sco r e − s co reStep )
{

// minimum accuracy i s not s a t i s f i e d
i f ( s c o r e <= minScore )
{

Console . WriteLine ( "FAILURE: minimum accuracy i s not s a t i s f i e d between sphere s " + j + " and " + ( j +1)) ;
r e turn −1.0;

}



APÊNDICE A. Código Fonte: Algoritmo de Comparação Sequencial 64

r_n += rad iusStep ;
}

}
// Checks i f ’ attempt ’ s t i l l has poses to be used
i f ( ! ( currentPoseIndex < attempt . Poses . Count ) )
{

Console . WriteLine ( " Score was " + ( f i n a l S c o r e / ( standard . Poses . Count − 1) ) +
" but never entered the " + ( j + 1) + " sphere " ) ;

r e turn f i n a l S c o r e / ( standard . Poses . Count − 1 ) ;
}

// Reads u n t i l ’ attempt ’ l e a v e s next sphere or r eaches the end o f the movement
f o r ( ; currentPoseIndex < attempt . Poses . Count &&

Is InSphere ( attempt . Poses [ currentPoseIndex ] , standard . Poses [ j + 1 ] , r_n ) ; currentPoseIndex++)
{

// reaches the end o f the movement
i f ( j + 1 == standard . Poses . Count )
{

Console . WriteLine ( "SUCCESS " ) ;
r e turn f i n a l S c o r e / ( standard . Poses . Count − 1 ) ; // f i n a l s c o r e i s average o f i n d i v i d u a l s c o r e s

}
e l s e
{

i s InNextSphere = true ;
}

}
// Checks i f ’ attempt ’ s t i l l has poses to be used
i f ( ! ( currentPoseIndex < attempt . Poses . Count ) )
{

Console . WriteLine ( " Score was " + ( f i n a l S c o r e / ( standard . Poses . Count − 1) ) +
" but never l e f t the " + ( j + 1) + " sphere " ) ;

r e turn f i n a l S c o r e / ( standard . Poses . Count − 1 ) ;
}

i f ( i s InNextSphere )
{

f i n a l S c o r e += sco r e ;
s c o r e = 1 ;
r_n = minRadius ;



APÊNDICE A. Código Fonte: Algoritmo de Comparação Sequencial 65

i s InNextSphere = f a l s e ;
}

}

Console . WriteLine ( " Movement didn ’ t end ? " ) ;
r e turn −1.0;

}

pub l i c s t a t i c bool I s InSphere ( Pose attemptPose , Pose standardPose , double rad iu s )
{

re turn AuxGeometry . EuclideanNorm ( attemptPose , standardPose ) <= rad iu s ;
}

pub l i c s t a t i c Pose MiddlePose ( Pose pose1 , Pose pose2 )
{

bool f l a g = f a l s e ;
Pose middlePose = new Pose (new Dict ionary<s t r i ng , double >() ) ;

i f ( pose1 . GenericParameters . Count != pose2 . GenericParameters . Count )
{

f l a g = true ;
Console . WriteLine ( "FAILURE: poses do not have same number o f e lements " ) ;

}

f o r each ( KeyValuePair<s t r i ng , double> parameter in pose1 . GenericParameters )
{

i f ( ! pose2 . GenericParameters . ContainsKey ( parameter . Key ) )
{

f l a g = true ;
Console . WriteLine ( "FAILURE: attempt pose does not have parameter " + parameter . Key ) ;

}
}

i f ( ! f l a g )
{

double midValue ;

f o r each ( KeyValuePair<s t r i ng , double> parameter in pose1 . GenericParameters )
{



APÊNDICE A. Código Fonte: Algoritmo de Comparação Sequencial 66

midValue = 0 .5 * ( parameter . Value + pose2 . GenericParameters [ parameter . Key ] ) ;
middlePose . GenericParameters . Add( parameter . Key , midValue ) ;

}
}

re turn middlePose ;
}

pub l i c s t a t i c double Trans i t ionRadius ( Pose pose1 , Pose pose2 , double rad iu s )
{

re turn Math . Sqrt (Math .Pow( radius , 2) + Math .Pow(0 . 5* AuxGeometry . EuclideanNorm ( pose1 , pose2 ) , 2 ) ) ;
}

}

pub l i c s t a t i c c l a s s AuxGeometry
{

pub l i c s t a t i c double EuclideanNorm ( Pose pose1 , Pose pose2 )
{

double norm = 0 ;

i f ( pose1 . GenericParameters . Count != pose2 . GenericParameters . Count )
{

norm = −1;
Console . WriteLine ( "FAILURE: poses do not have same number o f e lements " ) ;

}

f o r each ( KeyValuePair<s t r i ng , double> parameter in pose1 . GenericParameters )
{

i f ( ! pose2 . GenericParameters . ContainsKey ( parameter . Key ) )
{

norm = −1;
Console . WriteLine ( "FAILURE: attempt pose does not have parameter " + parameter . Key ) ;

}
}
i f (norm > −1)
{

fo r each ( KeyValuePair<s t r i ng , double> parameter in pose1 . GenericParameters )
{

norm += Math .Pow( ( parameter . Value − pose2 . GenericParameters [ parameter . Key ] ) , 2 ) ;



APÊNDICE A. Código Fonte: Algoritmo de Comparação Sequencial 67

}
norm = Math . Sqrt (norm ) ;

}

re turn norm ;
}

pub l i c s t a t i c double AngleMidPoint ( Point3D point1 , Point3D middlePoint , Point3D point2 )
{

Vector3D vec1 = Point3D . Subtract ( point1 , middlePoint ) ;
Vector3D vec2 = Point3D . Subtract ( point2 , middlePoint ) ;

// Check f o r geometr ic s i n g u l a r i t i e s
Vector3D crProd = Vector3D . CrossProduct ( vec1 , vec2 ) ;
double t r i ang l eArea = 0 .5 * Math . Sqrt ( Vector3D . DotProduct ( crProd , crProd ) ) ;
double answer ;
i f ( t r i ang l eArea < 0 . 01 )
{

Console . WriteLine ( "WARNING: Geometric s i n g u l a r i t y . " ) ;
answer = −1;

}

e l s e
{

answer = Vector3D . AngleBetween ( vec2 , vec1 ) ;
}

re turn answer ;
}

pub l i c s t a t i c Vector3D NormalToPlan ( Point3D point1 , Point3D point2 , Point3D point3 )
{

Vector3D vec1OfPlan = Point3D . Subtract ( point1 , po int3 ) ;
Vector3D vec2OfPlan = Point3D . Subtract ( point2 , po int3 ) ;

// Check f o r geometr ic s i n g u l a r i t i e s
Vector3D crProd = Vector3D . CrossProduct ( vec1OfPlan , vec2OfPlan ) ;
double t r i ang l eArea = 0 .5 * Math . Sqrt ( Vector3D . DotProduct ( crProd , crProd ) ) ;
Vector3D answer ;



APÊNDICE A. Código Fonte: Algoritmo de Comparação Sequencial 68

i f ( t r i ang l eArea < 0 . 01 )
{

Console . WriteLine ( "WARNING: Geometric s i n g u l a r i t y . " ) ;
answer = new Vector3D ( ) ;

}

e l s e
{

answer = Vector3D . CrossProduct ( vec1OfPlan , vec2OfPlan ) ;
answer . Normalize ( ) ;

}

re turn answer ;
}

pub l i c s t a t i c double AngleBetweenVectorAndPlan ( Point3D pointOutsidePlan , Point3D commonPoint , Point3D point1 , Point3D point2 )
{

Vector3D vecOutPlan = Point3D . Subtract ( pointOutsidePlan , commonPoint ) ;
Vector3D normal = NormalToPlan ( commonPoint , point1 , po int2 ) ;

// Check f o r geometr ic s i n g u l a r i t i e s
Vector3D crProd = Vector3D . CrossProduct ( Point3D . Subtract ( commonPoint , po int1 ) , Point3D . Subtract ( commonPoint , po int2 ) ) ;
double t r i ang l eArea = 0 .5 * Math . Sqrt ( Vector3D . DotProduct ( crProd , crProd ) ) ;
double vecS i z e = vecOutPlan . Length ;
double answer ;
i f ( t r i ang l eArea < 0.01 | | v e cS i z e < 0 . 01 )
{

Console . WriteLine ( "WARNING: Geometric s i n g u l a r i t y . " ) ;
answer = −1;

}

e l s e
{

answer = Vector3D . AngleBetween ( vecOutPlan , normal ) ;
i f ( answer > 90) answer = 180 − answer ;
answer = 90 − answer ;

}

re turn answer ;



APÊNDICE A. Código Fonte: Algoritmo de Comparação Sequencial 69

}

pub l i c s t a t i c double AngleBetweenPlanes ( Point3D point11 , Point3D point12 , Point3D point13 , Point3D point21 , Point3D point22 , Point3D point23 )
{

Vector3D normal1 = NormalToPlan ( point11 , point12 , po int13 ) ;
Vector3D normal2 = NormalToPlan ( point21 , point22 , po int23 ) ;

r e turn Vector3D . AngleBetween ( normal1 , normal2 ) ;
}

pub l i c s t a t i c double AngleBetweenVectorAndVertical ( Point3D point1 , Point3D point2 ) // c o n s i d e r s l a s t coo rd inate as the v e r t i c a l ax i s
{

Vector3D vecto r = Point3D . Subtract ( point1 , po int2 ) ;

// Check f o r geometr ic s i n g u l a r i t i e s
double answer ;
i f ( vec to r . Length < 0 . 01 )
{

Console . WriteLine ( "WARNING: Geometric s i n g u l a r i t y . " ) ;
answer = −1;

}

e l s e
{

Vector3D ver t = Vector3D . Mult ip ly ( vec to r . Length , new Vector3D (0 , 0 , 1 ) ) ;
answer = Vector3D . AngleBetween ( vector , ve r t ) ;

}

re turn answer ;
}

pub l i c s t a t i c Point3D ProjectPointOntoPlan ( Point3D pointOutsidePlan , Point3D point1 , Point3D point2 , Point3D point3 )
{

// Check f o r geometr ic s i n g u l a r i t i e s
Vector3D crProd = Vector3D . CrossProduct ( Point3D . Subtract ( point1 , po int2 ) , Point3D . Subtract ( point1 , po int3 ) ) ;
double t r i ang l eArea = 0 .5 * Math . Sqrt ( Vector3D . DotProduct ( crProd , crProd ) ) ;
Point3D answer ;
i f ( t r i ang l eArea < 0 . 01 )
{



APÊNDICE A. Código Fonte: Algoritmo de Comparação Sequencial 70

Console . WriteLine ( "WARNING: Geometric s i n g u l a r i t y . " ) ;
answer = new Point3D ( ) ;

}

e l s e
{

// Ca l cu l a t e s the p ro j e c t ed po int
Vector3D normal = Vector3D . CrossProduct ( Point3D . Subtract ( point1 , po int2 ) , Point3D . Subtract ( point1 , po int3 ) ) ;
normal . Normalize ( ) ;
double d i s t ance = Vector3D . DotProduct ( normal , Point3D . Subtract ( pointOutsidePlan , po int1 ) ) ;
answer = Point3D . Subtract ( pointOutsidePlan , Vector3D . Mult ip ly ( d i s tance , normal ) ) ; // p ro j e c t ed po int

}

re turn answer ;
}

pub l i c s t a t i c double AngleInPlanBetweenProjectionAndVector ( Point3D pointOutsidePlan , Point3D commonPoint , Point3D re f e r encePo in t , Point3D point3 )
{

Point3D projP = ProjectPointOntoPlan ( pointOutsidePlan , commonPoint , r e f e r encePo in t , po int3 ) ;

r e turn AngleMidPoint ( projP , commonPoint , r e f e r en c ePo in t ) ;
}

pub l i c s t a t i c double AngleInPlanBetweenProject ions ( Point3D extremityPoint , Point3D commonPointOutsidePlan , Point3D commonPoint , Point3D point1 , Point3D point2 )
{

Point3D ext rPro j = ProjectPointOntoPlan ( extremityPoint , commonPoint , point1 , po int2 ) ;
Point3D commOutProj = ProjectPointOntoPlan ( commonPointOutsidePlan , commonPoint , point1 , po int2 ) ;
Vector3D vec1 = Point3D . Subtract ( extrProj , commOutProj ) ;
Vector3D vec2 = Point3D . Subtract ( commOutProj , commonPoint ) ;

r e turn Vector3D . AngleBetween ( vec2 , vec1 ) ;
}

}
}



71

APÊNDICE B – Código Fonte: Algoritmo
para Testes de Precisão

B.1 testgenerator.py
import math
from matp lo t l i b import pyplot as p l t
import numpy as np

oneLineS = np . l i n s p a c e (0 , 125 .6637 ,160)
# de f ined from 0 to 40* pi , r ep r e s en t i ng 20 r e p e t i t i o n s

threeParamsS = np . vstack ( ( oneLineS , oneLineS , oneLineS ) )

threeParamsS [ 0 , ] = math . p i *np . cos ( threeParamsS [ 0 , ] )
threeParamsS [ 1 , ] = math . p i *np . s i n ( threeParamsS [ 1 , ] )
threeParamsS [ 2 , ] = math . p i *np . s i n (0 . 5* threeParamsS [ 2 , ] )

f i l e S t a n d a r d = open ( " standardMovement3Params . txt " , "w" )
f i l e S t a n d a r d = open ( " standardMovement3Params . txt " , " a+")

f o r row in threeParamsS :
f o r va lue in row :

f i l e S t a n d a r d . wr i t e ("% f " % value )
f i l e S t a n d a r d . wr i t e ( "\ n " )

f i l e S t a n d a r d . c l o s e ( )

oneLineA = np . l i n s p a c e (0 ,125 .6637 ,15*160)
# sampled 15 t imes more o f t en than the Standard

threeParamsA = np . vstack ( ( oneLineA , oneLineA , oneLineA ) )

no i s e1 = np . random . normal (0 , . 05 , 15*160 )
no i s e2 = np . random . normal (0 , . 05 , 15*160 )
no i s e3 = np . random . normal (0 , . 05 , 15*160 )



APÊNDICE B. Código Fonte: Algoritmo para Testes de Precisão 72

# 0 i s the mean o f the normal d i s t r i b u t i o n
# 1 i s the standard dev i a t i on o f the normal d i s t r i b u t i o n

threeParamsA [ 0 , ] = math . p i *np . cos ( threeParamsA [ 0 , ] ) + no i s e1
threeParamsA [ 1 , ] = math . p i *np . s i n ( threeParamsA [ 1 , ] ) + no i s e2
threeParamsA [ 2 , ] = math . p i *np . s i n (0 . 5* threeParamsA [ 2 , ] ) + no i s e3

f i l eAttempt = open ( " attemptMovement3ParamsDotOFive . txt " , "w" )
f i l eAttempt = open ( " attemptMovement3ParamsDotOFive . txt " , " a+")

f o r row in threeParamsA :
f o r va lue in row :

f i l eAttempt . wr i t e ("% f " % value )
f i l eAttempt . wr i t e ( "\ n " )

f i l eAttempt . c l o s e ( )

B.2 jointsPlotter.py
from matp lo t l i b import pyplot as p l t
import math

f i l e 1 = open ( ’ l a j . txt ’ , ’ r ’ )
l i n e s = [ l i n e . s p l i t ( ) f o r l i n e in f i l e 1 ]

SpineBase = [ ]
SpineMid = [ ]
Neck = [ ]
Head = [ ]
Shou lderLe f t = [ ]
ElbowLeft = [ ]
WristLeft = [ ]
HandLeft = [ ]
ShoulderRight = [ ]
ElbowRight = [ ]
WristRight = [ ]
HandRight = [ ]
HipLeft = [ ]
KneeLeft = [ ]
AnkleLeft = [ ]



APÊNDICE B. Código Fonte: Algoritmo para Testes de Precisão 73

FootLeft = [ ]
HipRight = [ ]
KneeRight = [ ]
AnkleRight = [ ]
FootRight = [ ]
SpineShoulder = [ ]
HandTipLeft = [ ]
ThumbLeft = [ ]
HandTipRight = [ ]
ThumbRight = [ ]

f o r j o i n t in l i n e s :

i f j o i n t [ 0 ] == ’ SpineBase ’ :
SpineBase . append ( [ f l o a t ( j o i n t [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 2 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 3 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ] )

i f j o i n t [ 0 ] == ’ SpineMid ’ :
SpineMid . append ( [ f l o a t ( j o i n t [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 2 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 3 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ] )

i f j o i n t [ 0 ] == ’ Neck ’ :
Neck . append ( [ f l o a t ( j o i n t [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 2 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 3 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ] )

i f j o i n t [ 0 ] == ’Head ’ :
Head . append ( [ f l o a t ( j o i n t [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 2 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 3 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ] )

i f j o i n t [ 0 ] == ’ ShoulderLeft ’ :
Shou lderLe f t . append ( [ f l o a t ( j o i n t [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 2 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 3 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ] )

i f j o i n t [ 0 ] == ’ ElbowLeft ’ :



APÊNDICE B. Código Fonte: Algoritmo para Testes de Precisão 74

ElbowLeft . append ( [ f l o a t ( j o i n t [ 1 ] . r e p l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 2 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 3 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ] )

i f j o i n t [ 0 ] == ’ WristLeft ’ :
WristLeft . append ( [ f l o a t ( j o i n t [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 2 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 3 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ] )

i f j o i n t [ 0 ] == ’ HandLeft ’ :
HandLeft . append ( [ f l o a t ( j o i n t [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 2 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 3 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ] )

i f j o i n t [ 0 ] == ’ ShoulderRight ’ :
ShoulderRight . append ( [ f l o a t ( j o i n t [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 2 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 3 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ] )

i f j o i n t [ 0 ] == ’ ElbowRight ’ :
ElbowRight . append ( [ f l o a t ( j o i n t [ 1 ] . r e p l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 2 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 3 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ] )

i f j o i n t [ 0 ] == ’ WristRight ’ :
WristRight . append ( [ f l o a t ( j o i n t [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 2 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 3 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ] )

i f j o i n t [ 0 ] == ’ HandRight ’ :
HandRight . append ( [ f l o a t ( j o i n t [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 2 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 3 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ] )

i f j o i n t [ 0 ] == ’ HipLeft ’ :
HipLeft . append ( [ f l o a t ( j o i n t [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 2 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 3 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ] )



APÊNDICE B. Código Fonte: Algoritmo para Testes de Precisão 75

i f j o i n t [ 0 ] == ’ KneeLeft ’ :
KneeLeft . append ( [ f l o a t ( j o i n t [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 2 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 3 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ] )

i f j o i n t [ 0 ] == ’ AnkleLeft ’ :
AnkleLeft . append ( [ f l o a t ( j o i n t [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 2 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 3 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ] )

i f j o i n t [ 0 ] == ’ FootLeft ’ :
FootLeft . append ( [ f l o a t ( j o i n t [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 2 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 3 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ] )

i f j o i n t [ 0 ] == ’ HipRight ’ :
HipRight . append ( [ f l o a t ( j o i n t [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 2 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 3 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ] )

i f j o i n t [ 0 ] == ’ KneeRight ’ :
KneeRight . append ( [ f l o a t ( j o i n t [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 2 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 3 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ] )

i f j o i n t [ 0 ] == ’ AnkleRight ’ :
AnkleRight . append ( [ f l o a t ( j o i n t [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 2 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 3 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ] )

i f j o i n t [ 0 ] == ’ FootRight ’ :
FootRight . append ( [ f l o a t ( j o i n t [ 1 ] . r e p l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 2 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 3 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ] )

i f j o i n t [ 0 ] == ’ SpineShoulder ’ :
SpineShoulder . append ( [ f l o a t ( j o i n t [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 2 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 3 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ] )



APÊNDICE B. Código Fonte: Algoritmo para Testes de Precisão 76

i f j o i n t [ 0 ] == ’ HandTipLeft ’ :
HandTipLeft . append ( [ f l o a t ( j o i n t [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 2 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 3 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ] )

i f j o i n t [ 0 ] == ’ ThumbLeft ’ :
ThumbLeft . append ( [ f l o a t ( j o i n t [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 2 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 3 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ] )

i f j o i n t [ 0 ] == ’ HandTipRight ’ :
HandTipRight . append ( [ f l o a t ( j o i n t [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 2 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 3 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ] )

i f j o i n t [ 0 ] == ’ThumbRight ’ :
ThumbRight . append ( [ f l o a t ( j o i n t [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 2 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ,
f l o a t ( j o i n t [ 3 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) ] )

WristRightX = [ ]
WristRightY = [ ]
WristRightZ = [ ]

f o r coords in WristLeft :
WristRightX . append ( coords [ 0 ] )
WristRightY . append ( coords [ 1 ] )
WristRightZ . append ( coords [ 2 ] )

ElbowRightX = [ ]
ElbowRightY = [ ]
ElbowRightZ = [ ]

f o r coords in ElbowLeft :
ElbowRightX . append ( coords [ 0 ] )
ElbowRightY . append ( coords [ 1 ] )
ElbowRightZ . append ( coords [ 2 ] )



APÊNDICE B. Código Fonte: Algoritmo para Testes de Precisão 77

ShoulderRightX = [ ]
ShoulderRightY = [ ]
ShoulderRightZ = [ ]

f o r coords in Shou lderLe f t :
ShoulderRightX . append ( coords [ 0 ] )
ShoulderRightY . append ( coords [ 1 ] )
ShoulderRightZ . append ( coords [ 2 ] )

# chosen =

p l t . p l o t ( chosen )
p l t . show ( )

B.3 genParmsPlotter.py
from matp lo t l i b import pyplot as p l t

f i l e 1 = open ( ’ l s gp . txt ’ , ’ r ’ )
l i n e s = [ l i n e . s p l i t ( ) f o r l i n e in f i l e 1 ]

r ightKneeAngle = [ ]
l e f tKneeAngle = [ ]
r ightElbowAngle = [ ]
le f tElbowAngle = [ ]
rightHandAngle = [ ]
le ftHandAngle = [ ]
r i gh tHandInc l i na t i on = [ ]
l e f t H a n d I n c l i n a t i o n = [ ]
r ightFootAngle = [ ]
l e f tFootAng l e = [ ]
r i g h t F o o t I n c l i n a t i o n = [ ]
l e f t F o o t I n c l i n a t i o n = [ ]
r i g h t L e g I n c l i n a t i o n = [ ]
l e f t L e g I n c l i n a t i o n = [ ]
rightLegPendulum = [ ]
leftLegPendulum = [ ]
rightArmAngle = [ ]
leftArmAngle = [ ]
r i gh tArmInc l ina t i on = [ ]



APÊNDICE B. Código Fonte: Algoritmo para Testes de Precisão 78

l e f tA rmInc l i n a t i on = [ ]
rightArmTwist = [ ]
leftArmTwistn = [ ]
torsoAngle = [ ]
torsoTwist = [ ]
torsoPendulum = [ ]
neckAngle = [ ]
headAngle = [ ]
headPendulum = [ ]
v e r t i c a l I n c l i n a t i o n = [ ]

f o r gener icParameter in l i n e s :

i f gener icParameter [ 0 ] == ’ rightKneeAngle ’ :
r ightKneeAngle . append ( f l o a t ( gener icParameter [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) )

i f gener icParameter [ 0 ] == ’ le ftKneeAngle ’ :
l e f tKneeAngle . append ( f l o a t ( gener icParameter [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) )

i f gener icParameter [ 0 ] == ’ rightElbowAngle ’ :
r ightElbowAngle . append ( f l o a t ( gener icParameter [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) )

i f gener icParameter [ 0 ] == ’ le ftElbowAngle ’ :
l e f tElbowAngle . append ( f l o a t ( gener icParameter [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) )

i f gener icParameter [ 0 ] == ’ rightHandAngle ’ :
rightHandAngle . append ( f l o a t ( gener icParameter [ 1 ] . r e p l a c e ( ’ , ’ , ’ . ’ ) ) )

i f gener icParameter [ 0 ] == ’ leftHandAngle ’ :
le ftHandAngle . append ( f l o a t ( gener icParameter [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) )

i f gener icParameter [ 0 ] == ’ r i ghtHandInc l inat i on ’ :
r i gh tHandInc l i na t i on . append ( f l o a t ( gener icParameter [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) )

i f gener icParameter [ 0 ] == ’ l e f tHand Inc l i na t i on ’ :
l e f t H a n d I n c l i n a t i o n . append ( f l o a t ( gener icParameter [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) )

i f gener icParameter [ 0 ] == ’ r ightFootAngle ’ :
r ightFootAngle . append ( f l o a t ( gener icParameter [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) )



APÊNDICE B. Código Fonte: Algoritmo para Testes de Precisão 79

i f gener icParameter [ 0 ] == ’ le f tFootAngle ’ :
l e f tFootAng l e . append ( f l o a t ( gener icParameter [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) )

i f gener icParameter [ 0 ] == ’ r i gh tFo o t I n c l i n a t i o n ’ :
r i g h t F o o t I n c l i n a t i o n . append ( f l o a t ( gener icParameter [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) )

i f gener icParameter [ 0 ] == ’ l e f t F o o t I n c l i n a t i o n ’ :
l e f t F o o t I n c l i n a t i o n . append ( f l o a t ( gener icParameter [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) )

i f gener icParameter [ 0 ] == ’ r i g h t L e g I n c l i n a t i o n ’ :
r i g h t L e g I n c l i n a t i o n . append ( f l o a t ( gener icParameter [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) )

i f gener icParameter [ 0 ] == ’ l e f t L e g I n c l i n a t i o n ’ :
l e f t L e g I n c l i n a t i o n . append ( f l o a t ( gener icParameter [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) )

i f gener icParameter [ 0 ] == ’ rightLegPendulum ’ :
rightLegPendulum . append ( f l o a t ( gener icParameter [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) )

i f gener icParameter [ 0 ] == ’ leftLegPendulum ’ :
leftLegPendulum . append ( f l o a t ( gener icParameter [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) )

i f gener icParameter [ 0 ] == ’ rightArmAngle ’ :
rightArmAngle . append ( f l o a t ( gener icParameter [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) )

i f gener icParameter [ 0 ] == ’ leftArmAngle ’ :
leftArmAngle . append ( f l o a t ( gener icParameter [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) )

i f gener icParameter [ 0 ] == ’ r ightArmInc l inat ion ’ :
r i gh tArmInc l ina t i on . append ( f l o a t ( gener icParameter [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) )

i f gener icParameter [ 0 ] == ’ l e f tArmInc l i na t i on ’ :
l e f tA rmInc l i n a t i on . append ( f l o a t ( gener icParameter [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) )

i f gener icParameter [ 0 ] == ’ rightArmTwist ’ :
rightArmTwist . append ( f l o a t ( gener icParameter [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) )

i f gener icParameter [ 0 ] == ’ leftArmTwistn ’ :
leftArmTwistn . append ( f l o a t ( gener icParameter [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) )



APÊNDICE B. Código Fonte: Algoritmo para Testes de Precisão 80

i f gener icParameter [ 0 ] == ’ torsoAngle ’ :
torsoAngle . append ( f l o a t ( gener icParameter [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) )

i f gener icParameter [ 0 ] == ’ torsoTwist ’ :
tor soTwist . append ( f l o a t ( gener icParameter [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) )

i f gener icParameter [ 0 ] == ’ torsoPendulum ’ :
torsoPendulum . append ( f l o a t ( gener icParameter [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) )

i f gener icParameter [ 0 ] == ’ neckAngle ’ :
neckAngle . append ( f l o a t ( gener icParameter [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) )

i f gener icParameter [ 0 ] == ’ headAngle ’ :
headAngle . append ( f l o a t ( gener icParameter [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) )

i f gener icParameter [ 0 ] == ’ headPendulum ’ :
headPendulum . append ( f l o a t ( gener icParameter [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) )

i f gener icParameter [ 0 ] == ’ v e r t i c a l I n c l i n a t i o n ’ :
v e r t i c a l I n c l i n a t i o n . append ( f l o a t ( gener icParameter [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) ) )

# chosen =

p l t . p l o t ( chosen )
p l t . show ( )



81

APÊNDICE C – Código Fonte: Aplicativo
Kinect V1

namespace Micro so f t . Samples . Kinect . Ske l e tonBas i c s
{
us ing System . IO ;
us ing System . Windows ;
us ing System . Windows . Media ;
us ing Mic roso f t . Kinect ;
us ing System ;
us ing System . C o l l e c t i o n s . Generic ;
us ing System . Linq ;
us ing KinectHumanMovementEvaluation ;
us ing KHMESDK1_8 = KHMESDK1_8;
us ing KHMESDK2_0 = KHMESDK2_0;

/// <summary>
/// I n t e r a c t i o n l o g i c f o r MainWindow . xaml
/// </summary>
pub l i c p a r t i a l c l a s s MainWindow : Window
{
/// <summary>
/// Width o f output drawing
/// </summary>
pr i va t e const f l o a t RenderWidth = 640 .0 f ;

/// <summary>
/// Height o f our output drawing
/// </summary>
pr i va t e const f l o a t RenderHeight = 480 .0 f ;

/// <summary>
/// Thickness o f drawn j o i n t l i n e s
/// </summary>
pr i va t e const double Jo intThickness = 3 ;



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 82

/// <summary>
/// Thickness o f body cente r e l l i p s e
/// </summary>
pr i va t e const double BodyCenterThickness = 10 ;

/// <summary>
/// Thickness o f c l i p edge r e c t a n g l e s
/// </summary>
pr i va t e const double ClipBoundsThickness = 10 ;

/// <summary>
/// Brush used to draw ske l e t on cente r po int
/// </summary>
pr i va t e readonly Brush centerPointBrush = Brushes . Blue ;

/// <summary>
/// Brush used f o r drawing j o i n t s that are cu r r en t l y tracked
/// </summary>
pr i va t e readonly Brush trackedJointBrush = new Sol idColorBrush ( Color . FromArgb (255 , 68 , 192 , 6 8 ) ) ;

/// <summary>
/// Brush used f o r drawing j o i n t s that are cu r r en t l y i n f e r r e d
/// </summary>
pr i va t e readonly Brush in f e r r edJo in tBru sh = Brushes . Yellow ;

/// <summary>
/// Pen used f o r drawing bones that are cu r r en t l y tracked
/// </summary>
pr i va t e readonly Pen trackedBonePen = new Pen( Brushes . Green , 6 ) ;

/// <summary>
/// Pen used f o r drawing bones that are cu r r en t l y i n f e r r e d
/// </summary>
pr i va t e readonly Pen inferredBonePen = new Pen( Brushes . Gray , 1 ) ;

/// <summary>
/// Active Kinect s enso r
/// </summary>



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 83

pr i va t e KinectSensor s enso r ;

/// <summary>
/// Drawing grousp f o r s k e l e t on render ing output
/// </summary>
pr i va t e DrawingGroup drawingGroup ;
p r i va t e DrawingGroup drawingGroup2 ;

/// <summary>
/// Drawing images that we w i l l d i sp l ay
/// </summary>
pr i va t e DrawingImage imageSource ;
p r i va t e DrawingImage imageSource2 ;

//
//
// New v a r i a b l e s :
//
//

// Flags :

/// <summary>
/// " Photo " button handl ing f l a g
/// </summary>
pr i va t e bool ske lPhoto = f a l s e ;

/// <summary>
/// " Save " button handl ing f l a g
/// </summary>
pr i va t e bool ske lSave = f a l s e ;

/// <summary>
/// " Capture Mode" button handl ing f l a g
/// </summary>
pr i va t e bool captureModeOn = true ;

/// <summary>
/// " Comparing Mode" button handl ing f l a g



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 84

/// </summary>
pr i va t e bool comparingModeOn = f a l s e ;

/// <summary>
/// " Model " checkbox handl ing f l a g
/// </summary>
pr i va t e bool modelOn = f a l s e ;

/// <summary>
/// " Load Model Photo " button handl ing f l a g
/// </summary>
pr i va t e bool loadModelPhoto = f a l s e ;

/// <summary>
/// " Load Photo " button handl ing f l a g
/// </summary>
pr i va t e bool loadPhoto = f a l s e ;

/// <summary>
/// " Seated Mode" checkbox handl ing f l a g
/// </summary>
pr i va t e bool seatedModeOn = f a l s e ;

/// <summary>
/// Flags the p l o t t i n g o f photos captured with " Seated Mode" enabled
/// </summary>
pr i va t e bool plotInSeatedMode = f a l s e ;

/// <summary>
/// Flags the p l o t t i n g lock ( by loop ing the same image ) on the r i g h t s c r e en
/// </summary>
pr i va t e bool photoScreenLock = f a l s e ;

/// <summary>
/// "REC" button handl ing f l a g
/// </summary>
pr i va t e bool recOn = f a l s e ;

/// <summary>



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 85

/// Flags the beg inning o f the " s t a r t i n g photo " s e l e c t i o n proce s s
/// </summary>
pr i va t e bool startingPhotoModeOn = f a l s e ;

/// <summary>
/// " S ta r t i ng Photo " button handl ing f l a g
/// </summary>
pr i va t e bool s t a r t i ngPhotoSe l e c t ed = f a l s e ;

/// <summary>
/// " Load Model Video " button handl ing f l a g
/// </summary>
pr i va t e bool loadModelVideo = f a l s e ;

/// <summary>
/// " Load Video " button handl ing f l a g
/// </summary>
pr i va t e bool loadVideo = f a l s e ;

/// <summary>
/// " Sta r t Loop " button handl ing f l a g ( l e f t s c r e en )
/// </summary>
pr i va t e bool loopOnModel = f a l s e ;

/// <summary>
/// " Sta r t Loop " button handl ing f l a g ( r i g h t s c r e en )
/// </summary>
pr i va t e bool loopOnUser = f a l s e ;

// Ske le ton data :

/// <summary>
/// Holds a pose data
/// </summary>
pr i va t e Ske le ton skelData = new Ske le ton ( ) ;

/// <summary>
/// Holds a movement data ( s e t o f poses )
/// </summary>



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 86

List <Skeleton> ske l sData = new List <Skeleton >() ;

/// <summary>
/// Holds a sk e l e t on data loaded from a text f i l e ( model )
/// </summary>
pr i va t e Ske le ton loadModelSkel = new Ske le ton ( ) ;

/// <summary>
/// Holds a sk e l e t on data loaded from a text f i l e ( user )
/// </summary>
pr i va t e Ske le ton loadPhotoSkel = new Ske le ton ( ) ;

// Indexes :

/// <summary>
/// Holds the cu r r en t l y p l o t t ed pose ’ s index ( model )
/// </summary>
i n t sh i f tValueModel = 0 ;

/// <summary>
/// Holds the cu r r en t l y p l o t t ed pose ’ s index ( user )
/// </summary>
i n t sh i f tVa lueUse r = 0 ;

/// <summary>
/// Holds the s e l e c t e d s t a r t i n g photo ’ s index
/// </summary>
i n t s tar t ingPhotoIndex = 0 ;

// Control v a r i a b l e s :

/// <summary>
/// Used f o r the p l o t t i n g speed con t r o l ( model )
/// </summary>
i n t loopDelayModel = 0 ;

/// <summary>
/// Used f o r the p l o t t i n g speed con t r o l ( user )
/// </summary>



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 87

i n t loopDelayUser = 0 ;

/// <summary>
/// Used f o r the p l o t t i n g speed con t r o l ( setup value )
/// </summary>
i n t loopDelaySetup = 0 ;

/// <summary>
/// Holds the cur rent movement ’ s l ength ( modelo )
/// </summary>
i n t videoLengthCountModel = 0 ;

/// <summary>
/// Holds the cur rent movement ’ s l ength ( user )
/// </summary>
i n t videoLengthCountUser = 0 ;

/// <summary>
/// Used in Sphere method ( pose eva lua t i on ) .
/// Def ine how the eva lua t i on proce s s w i l l occur , and must be as s i gned
be f o r e the program s t a r t .
/// </summary>
double rad iusPose = 30 ;
double minScorePose = 0 . 3 ;

/// <summary>
/// Used in Sphere method (movement eva lua t i on ) .
/// Def ine how the eva lua t i on proce s s w i l l occur , and must be as s i gned
be f o r e the program s t a r t .
/// </summary>
double radiusMovement = 80 ;
double rad iusStep = 30 ;
double minScoreMovement = 0 . 3 ;
double s co reStep = 0 . 0 2 ;

// Paths :

s t r i n g photoCorePathModel = @"C:\ Users \Gian\Desktop\ Po l i 2015\ Segundo Semestre \TCC\ Kinect \ Ske le tonBas i c s −WPF\ s k e l e t o n _ f i l e s \ poses " ;
s t r i n g photoCorePathUser = @"C:\ Users \Gian\Desktop\ Po l i 2015\ Segundo Semestre \TCC\ Kinect \ Ske l e tonBas i c s −WPF\ s k e l e t o n _ f i l e s \ poses " ;



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 88

s t r i n g videoCorePathModel = @"C:\ Users \Gian\Desktop\ Po l i 2015\ Segundo Semestre \TCC\ Kinect \ Ske l e tonBas i c s −WPF\ s k e l e t o n _ f i l e s \movimentos\
r e f e r e n c i a " ;
s t r i n g videoCorePathUser = @"C:\ Users \Gian\Desktop\ Po l i 2015\ Segundo Semestre \TCC\ Kinect \ Ske le tonBas i c s −WPF\ s k e l e t o n _ f i l e s \movimentos\ usuar io " ;
s t r i n g compareResultPath = @"C:\ Users \Gian\Desktop\ Po l i 2015\ Segundo Semestre \TCC\ Kinect \ Ske le tonBas i c s −WPF\ s k e l e t o n _ f i l e s \ r e s u l t a d o s " ;

// F i l e names :

s t r i n g photoCoreNameModel = " poseTes t e_re f e r enc i a " ;
s t r i n g photoCoreNameUser = " poseTeste_usuar io " ;
s t r i n g videoCoreNameModel = " movimentoTeste_referencia_ " ;
s t r i n g videoCoreNameUser = " movimentoTeste_usuario_ " ;
s t r i n g compareResultName = " re su l t adoTes t e " ;

//
//
// Main :
//
//

/// <summary>
/// I n i t i a l i z e s a new in s tance o f the MainWindow c l a s s .
/// </summary>
pub l i c MainWindow ( )
{
In i t i a l i z eComponent ( ) ;
}

/// <summary>
/// Draws i n d i c a t o r s to show which edges are c l i p p i n g sk e l e t on data
/// </summary>
/// <param name=" sk e l e t on "> ske l e t on to draw c l i p p i n g in fo rmat ion
for </param>
/// <param name="drawingContext">drawing context to draw to</param>
pr i va t e s t a t i c void RenderClippedEdges ( Ske l e ton ske l e ton , DrawingContext
drawingContext )
{
i f ( s k e l e t on . ClippedEdges . HasFlag ( FrameEdges . Bottom ) )
{
drawingContext . DrawRectangle (



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 89

Brushes . Red ,
nu l l ,
new Rect (0 , RenderHeight − ClipBoundsThickness , RenderWidth ,
ClipBoundsThickness ) ) ;
}

i f ( s k e l e t on . ClippedEdges . HasFlag ( FrameEdges . Top ) )
{
drawingContext . DrawRectangle (
Brushes . Red ,
nu l l ,
new Rect (0 , 0 , RenderWidth , ClipBoundsThickness ) ) ;
}

i f ( s k e l e t on . ClippedEdges . HasFlag ( FrameEdges . Le f t ) )
{
drawingContext . DrawRectangle (
Brushes . Red ,
nu l l ,
new Rect (0 , 0 , ClipBoundsThickness , RenderHeight ) ) ;
}

i f ( s k e l e t on . ClippedEdges . HasFlag ( FrameEdges . Right ) )
{
drawingContext . DrawRectangle (
Brushes . Red ,
nu l l ,
new Rect ( RenderWidth − ClipBoundsThickness , 0 , ClipBoundsThickness ,
RenderHeight ) ) ;
}
}

/// <summary>
/// Execute s ta r tup ta sk s
/// </summary>
/// <param name="sender "> ob j e c t sending the event </param>
/// <param name="e">event arguments</param>
pr i va t e void WindowLoaded( ob j e c t sender , RoutedEventArgs e )
{



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 90

// Create the drawing groups we ’ l l use f o r drawing
t h i s . drawingGroup = new DrawingGroup ( ) ;
t h i s . drawingGroup2 = new DrawingGroup ( ) ;

// Create the image sour c e s that we can use in our image con t r o l
t h i s . imageSource = new DrawingImage ( t h i s . drawingGroup ) ;
t h i s . imageSource2 = new DrawingImage ( t h i s . drawingGroup2 ) ;

// Display the drawing us ing our image con t r o l
Image . Source = t h i s . imageSource ;
Image2 . Source = t h i s . imageSource2 ;

// Look through a l l s en s o r s and s t a r t the f i r s t connected one .
// This r e q u i r e s that a Kinect i s connected at the time o f app sta r tup .
// To make your app robust aga in s t plug /unplug .

f o r each ( var po t en t i a l S en s o r in KinectSensor . KinectSensors )
{
i f ( po t en t i a l S en so r . Status == KinectStatus . Connected )
{
t h i s . s en so r = po t en t i a l S en s o r ;
break ;
}
}

i f ( n u l l != t h i s . s en so r )
{
// Turn on the sk e l e t on stream to r e c e i v e sk e l e t on frames
t h i s . s en so r . SkeletonStream . Enable ( ) ;

// Add an event handler to be c a l l e d whenever the re i s new c o l o r
frame data
t h i s . s en so r . SkeletonFrameReady += t h i s . SensorSkeletonFrameReady ;

// Star t the s enso r !
t ry
{
t h i s . s en so r . S ta r t ( ) ;
}



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 91

catch ( IOException )
{
t h i s . s en so r = n u l l ;
}
}

i f ( n u l l == t h i s . s en so r )
{
// " no Kinect ready " e r r o r
}
}

/// <summary>
/// Execute shutdown tasks
/// </summary>
/// <param name="sender "> ob j e c t sending the event </param>
/// <param name="e">event arguments</param>
pr i va t e void WindowClosing ( ob j e c t sender ,
System . ComponentModel . CancelEventArgs e )
{
i f ( n u l l != t h i s . s en so r )
{
t h i s . s en so r . Stop ( ) ;
}
}

/// <summary>
/// Event handler f o r Kinect sensor ’ s SkeletonFrameReady event
/// </summary>
/// <param name="sender "> ob j e c t sending the event </param>
/// <param name="e">event arguments</param>
pr i va t e void SensorSkeletonFrameReady ( ob j e c t sender ,
SkeletonFrameReadyEventArgs e )
{

Ske le ton [ ] s k e l e t o n s = new Ske le ton [ 0 ] ;

// copying the captured sk e l e t on data
us ing ( SkeletonFrame skeletonFrame = e . OpenSkeletonFrame ( ) )



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 92

{
i f ( skeletonFrame != n u l l )
{
s k e l e t o n s = new Ske le ton [ skeletonFrame . SkeletonArrayLength ] ;
skeletonFrame . CopySkeletonDataTo ( s k e l e t o n s ) ;
}
}

// l e f t s c r e en
us ing ( DrawingContext dc = t h i s . drawingGroup . Open ( ) )
{
// draw a transparent background to s e t the render s i z e
dc . DrawRectangle ( Brushes . Black , nu l l , new Rect ( 0 . 0 , 0 . 0 , RenderWidth ,
RenderHeight ) ) ;

// i f capture mode i s on
i f ( s k e l e t o n s . Length != 0 && captureModeOn )
{
fo r each ( Ske l e ton s k e l in s k e l e t o n s )
{
RenderClippedEdges ( ske l , dc ) ; // show c l i p p i n g i n d i c a t o r s

i f ( s k e l . TrackingState == Ske le tonTrack ingState . Tracked ) // i f
the sk e l e t on
i s being tracked
{
t h i s . DrawBonesAndJoints ( ske l , dc ) ; // draw ske l e t on
}

e l s e i f ( s k e l . TrackingState == Ske le tonTrack ingState . Pos i t ionOnly )
only the p o s i t i o n
{
// draw p o s i t i o n
dc . DrawEll ipse (
t h i s . centerPointBrush ,
nu l l ,
t h i s . SkeletonPointToScreen ( s k e l . Po s i t i on ) ,
BodyCenterThickness ,
BodyCenterThickness ) ;



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 93

}
}
}

// e l s e i f comparing mode i s on
e l s e i f ( comparingModeOn )
{
i f ( loadModelPhoto ) // i f l oad ing photo
{
s t r i n g [ ] modelLines = F i l e . ReadAllLines ( Path . Combine ( photoCorePathModel ,
photoCoreNameModel + " . txt " ) ) ;
loadSkelDataFromText ( modelLines , t rue ) ;
t h i s . DrawBonesAndJoints ( loadModelSkel , dc ) ;
}

e l s e i f ( loadModelVideo ) // e l s e i f l oad ing video
{
i f ( loopOnModel == true ) // i f the v ideo i s be ing looped
{
// s e t t i n g the p l o t t i n g speed
i f ( loopDelayModel > 0) loopDelayModel −−; // i f a de lay i s s e t
( through loopDelaySetup ) , wait
e l s e // a f t e r wa i t ing ( or i f a de lay i s not s e t )
{

sh i f tValueModel++; // increment ing index
loopDelayModel = loopDelaySetup ; // ( re ) s e t t i n g de lay

}
}

// check ing cur r ent pose and c l o s i n g loop
i f ( sh i f tValueModel < 0) sh i f tValueModel = videoLengthCountModel ;
i f ( sh i f tValueModel > videoLengthCountModel ) sh i f tValueModel = 0 ;

// read ing data

s t r i n g [ ] modelLines = F i l e . ReadAllLines ( Path . Combine ( videoCorePathModel ,
videoCoreNameModel + shi f tValueModel + " . txt " ) ) ;

loadSkelDataFromText ( modelLines , t rue ) ;



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 94

// p l o t t i n g sk e l e t on
t h i s . DrawBonesAndJoints ( loadModelSkel , dc ) ;
}
}

// prevent drawing out s id e o f our render area
t h i s . drawingGroup . ClipGeometry = new RectangleGeometry (new Rect ( 0 . 0 , 0 . 0 ,
RenderWidth , RenderHeight ) ) ;
}

// Right s c r e en
us ing ( DrawingContext dc2 = t h i s . drawingGroup2 . Open ( ) )
{
// draw a transparent background to s e t the render s i z e
dc2 . DrawRectangle ( Brushes . Black , nu l l , new Rect ( 0 . 0 , 0 . 0 , RenderWidth ,
RenderHeight ) ) ;

// i f capture mode i s on
i f ( captureModeOn )
{
// i f a photo ( pose ) i s be ing taken
i f ( ske lPhoto )
{
fo r each ( Ske l e ton s k e l in s k e l e t o n s )
{
i f ( s k e l . TrackingState == Ske le tonTrack ingState . Tracked )
{

t h i s . DrawBonesAndJoints ( ske l , dc2 ) ; // p l o t t i n g sk e l e t on
skelData = s k e l ; // ho ld ing the data

}
}

ske l sData . Add( ske lData ) ; // add the new ske l e t on to the r e co rd ing data
( in t h i s case , ske l sData . l ength w i l l always be 1)
ske lPhoto = f a l s e ; // end photo
}



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 95

// l o ck ing the s c r e en ( by loop ing the same ske l e t on ) , only happens when
a photo i s taken ( " Take Photo " button )
i f ( photoScreenLock ) t h i s . DrawBonesAndJoints ( ske l sData [ 0 ] , dc2 ) ;

// i f a v ideo (movement ) i s be ing recorded
i f ( recOn )
{
fo r each ( Ske l e ton s k e l in s k e l e t o n s )
{
i f ( s k e l . TrackingState == Ske le tonTrack ingState . Tracked )
{

t h i s . DrawBonesAndJoints ( ske l , dc2 ) ; // p l o t t i n g sk e l e t on
skelData = s k e l ; // ho ld ing the data

}
}

ske l sData . Add( ske lData ) ; // add the new ske l e t on to the r e co rd ing data
}

// s e l e c t i n g the s t a r t i n g photo
e l s e i f ( startingPhotoModeOn )
{
// check ing cur r ent pose and c l o s i n g loop
i f ( sh i f tVa lueUse r < 0) sh i f tVa lueUse r = ( ske l sData . Count − 1 ) ;
i f ( sh i f tVa lueUse r > ( ske l sData . Count − 1) ) sh i f tVa lueUse r = 0 ;

t h i s . DrawBonesAndJoints ( ske l sData [ sh i f tVa lueUse r ] , dc2 ) ; // p l o t t i n g the
cu r r en t l y s e l e c t e d pose

// i f the " S ta r t i ng Photo " button was pre s sed
i f ( s t a r t i ngPhotoSe l e c t ed )
{
star t ingPhotoIndex = sh i f tVa lueUse r ; // ho ld ing s t a r t i n g photo index
s ta r t i ngPhotoSe l e c t ed = f a l s e ; // end s t a r t i n g photo s e l e c t i o n
}
}
}



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 96

e l s e i f ( comparingModeOn )
{
i f ( loadPhoto ) // i f a photo i s be ing loaded
{
s t r i n g [ ] photoLines = F i l e . ReadAllLines ( Path . Combine ( photoCorePathUser ,
photoCoreNameUser + " . txt " ) ) ;
loadSkelDataFromText ( photoLines , f a l s e ) ;
t h i s . DrawBonesAndJoints ( loadPhotoSkel , dc2 ) ;
}

e l s e i f ( loadVideo ) // e l s e i f a v ideo i s be ing loaded
{
i f ( loopOnUser == true ) // i f the v ideo i s being looped
{
// s e t t i n g the p l o t t i n g speed
i f ( loopDelayUser > 0) loopDelayUser −−; // i f a de lay i s s e t
( through loopDelaySetup ) , wait
e l s e // a f t e r wa i t ing ( or i f a de lay i s not s e t )
{

sh i f tVa lueUse r++; // increment ing index
loopDelayUser = loopDelaySetup ; // ( re ) s e t t i n g de lay

}
}

// check ing cur r ent pose and c l o s i n g loop
i f ( sh i f tVa lueUse r < 0) sh i f tVa lueUse r = videoLengthCountUser ;
i f ( sh i f tVa lueUse r > videoLengthCountUser ) sh i f tVa lueUse r = 0 ;

// read ing data
s t r i n g [ ] photoLines = F i l e . ReadAllLines ( Path . Combine ( videoCorePathUser ,
videoCoreNameUser +
sh i f tVa lueUse r + " . txt " ) ) ;
loadSkelDataFromText ( photoLines , f a l s e ) ;

// p l o t t i n g sk e l e t on
t h i s . DrawBonesAndJoints ( loadPhotoSkel , dc2 ) ;
}
}
}



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 97

// Saving f i l e s
i f ( ske lSave )
{
ske l sData . RemoveRange (0 , s tar t ingPhotoIndex ) ; // s e t t i n g the new s t a r t i n g
pose

f o r ( i n t j = 0 ; j < ske l sData . Count ; j++) {

s t r i n g st r ingData = n u l l ; // c l e a r i n g the new l i n e

f o r each ( Jo int j o i n t in ske l sData [ j ] . J o in t s )
{
i f ( seatedModeOn )
{

st r ingData += s t r i n g . Format ( "{0} {1} {2} {3} SeatedModeOn " + Environment . NewLine ,
j o i n t . JointType , j o i n t . Po s i t i on .X, j o i n t . Po s i t i on .Y, j o i n t . Po s i t i on . Z ) ;
}

e l s e
{
st r ingData += s t r i n g . Format ( "{0} {1} {2} {3} SeatedModeOff " + Environment . NewLine ,
j o i n t . JointType , j o i n t . Po s i t i on .X, j o i n t . Po s i t i on .Y, j o i n t . Po s i t i on . Z ) ;
}
}

// i f i t ’ s a model
i f (modelOn)
{
i f ( ske l sData . Count == 1) // pose
{
F i l e . WriteAllText ( Path . Combine ( photoCorePathModel , photoCoreNameModel + " . txt " ) ,
s t r ingData ) ;
}

e l s e // movement
{
F i l e . WriteAllText ( Path . Combine ( videoCorePathModel , videoCoreNameModel + j + " . txt " ) ,



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 98

s t r ingData ) ;
}
}

// i f not
e l s e i f ( ! modelOn)
{
i f ( ske l sData . Count == 1) // pose
{
F i l e . WriteAllText ( Path . Combine ( photoCorePathUser , photoCoreNameUser + " . txt " ) ,
s t r ingData ) ;
}
e l s e // movement
{
F i l e . WriteAllText ( Path . Combine ( videoCorePathUser , videoCoreNameUser + j + " . txt " ) ,
s t r ingData ) ;
}
}
}

ske lSave = f a l s e ; // end save
photoScreenLock = f a l s e ; // end sc r e en lock
ske l sData . Clear ( ) ; // c l e a r i n g the saved data
star t ingPhotoIndex = 0 ; // c l e a r i n g the s t a r t i n g index
}
}

/// <summary>
/// Draws a ske l e ton ’ s bones and j o i n t s
/// </summary>
/// <param name=" sk e l e t on "> ske l e t on to draw</param>
/// <param name="drawingContext">drawing context to draw to</param>
pr i va t e void DrawBonesAndJoints ( Ske l e ton ske l e ton , DrawingContext drawingContext )
{
// Render Torso
t h i s . DrawBone( ske l e ton , drawingContext , JointType . Head , JointType . ShoulderCenter ) ;
t h i s . DrawBone( ske l e ton , drawingContext , JointType . ShoulderCenter , JointType . Shou lderLe f t ) ;
t h i s . DrawBone( ske l e ton , drawingContext , JointType . ShoulderCenter , JointType . ShoulderRight ) ;
t h i s . DrawBone( ske l e ton , drawingContext , JointType . ShoulderCenter , JointType . Spine ) ;



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 99

t h i s . DrawBone( ske l e ton , drawingContext , JointType . Spine , JointType . HipCenter ) ;
t h i s . DrawBone( ske l e ton , drawingContext , JointType . HipCenter , JointType . HipLeft ) ;
t h i s . DrawBone( ske l e ton , drawingContext , JointType . HipCenter , JointType . HipRight ) ;

// Le f t Arm
t h i s . DrawBone( ske l e ton , drawingContext , JointType . ShoulderLeft , JointType . ElbowLeft ) ;
t h i s . DrawBone( ske l e ton , drawingContext , JointType . ElbowLeft , JointType . WristLeft ) ;
t h i s . DrawBone( ske l e ton , drawingContext , JointType . WristLeft , JointType . HandLeft ) ;

// Right Arm
t h i s . DrawBone( ske l e ton , drawingContext , JointType . ShoulderRight , JointType . ElbowRight ) ;
t h i s . DrawBone( ske l e ton , drawingContext , JointType . ElbowRight , JointType . WristRight ) ;
t h i s . DrawBone( ske l e ton , drawingContext , JointType . WristRight , JointType . HandRight ) ;

// Le f t Leg
t h i s . DrawBone( ske l e ton , drawingContext , JointType . HipLeft , JointType . KneeLeft ) ;
t h i s . DrawBone( ske l e ton , drawingContext , JointType . KneeLeft , JointType . AnkleLeft ) ;
t h i s . DrawBone( ske l e ton , drawingContext , JointType . AnkleLeft , JointType . FootLeft ) ;

// Right Leg
t h i s . DrawBone( ske l e ton , drawingContext , JointType . HipRight , JointType . KneeRight ) ;
t h i s . DrawBone( ske l e ton , drawingContext , JointType . KneeRight , JointType . AnkleRight ) ;
t h i s . DrawBone( ske l e ton , drawingContext , JointType . AnkleRight , JointType . FootRight ) ;

// Render Jo in t s
f o r each ( Jo int j o i n t in sk e l e t on . Jo in t s )
{
Brush drawBrush = n u l l ;

i f ( j o i n t . TrackingState == Jo intTrack ingState . Tracked | | comparingModeOn )
{
drawBrush = t h i s . t rackedJointBrush ;
}
e l s e i f ( j o i n t . TrackingState == Jo intTrack ingState . I n f e r r e d )
{
drawBrush = t h i s . i n f e r r edJo in tBru sh ;
}

i f ( drawBrush != n u l l )



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 100

{
drawingContext . DrawEll ipse ( drawBrush , nu l l , t h i s . SkeletonPointToScreen ( j o i n t . Po s i t i on ) ,
Jo intThickness , Jo intThickness ) ;
}
}
}

/// <summary>
/// Maps a Ske le tonPoint to l i e with in our render space and conver t s to Point
/// </summary>
/// <param name=" s k e l p o i n t ">point to map</param>
/// <returns >mapped point </returns >
pr i va t e Point SkeletonPointToScreen ( Ske le tonPoint s k e l p o i n t )
{
// Convert po int to depth space .
// We are not us ing depth d i r e c t l y , but we do want the po in t s in our 640 x480
output r e s o l u t i o n .
DepthImagePoint depthPoint = t h i s . s en so r . CoordinateMapper . MapSkeletonPointToDepthPoint ( ske lpo in t , DepthImageFormat . Resolution640x480Fps30 ) ;
r e turn new Point ( depthPoint .X, depthPoint .Y) ;
}

/// <summary>
/// Draws a bone l i n e between two j o i n t s
/// </summary>
/// <param name=" sk e l e t on "> ske l e t on to draw bones from</param>
/// <param name="drawingContext">drawing context to draw to</param>
/// <param name=" jo intType0"> j o i n t to s t a r t drawing from</param>
/// <param name=" jo intType1"> j o i n t to end drawing at</param>
pr i va t e void DrawBone( Ske l e ton ske l e ton , DrawingContext drawingContext , JointType
jointType0 , JointType jo intType1 )
{
Jo int j o i n t 0 = ske l e t on . Jo in t s [ jo intType0 ] ;
Jo int j o i n t 1 = ske l e t on . Jo in t s [ jo intType1 ] ;

// I f we can ’ t f i nd e i t h e r o f the se j o i n t s , e x i t
i f ( ( j o i n t 0 . TrackingState == Jo intTrack ingState . NotTracked | |
j o i n t 1 . TrackingState == Jo intTrack ingState . NotTracked ) && captureModeOn )
{
re turn ;



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 101

}

// Don ’ t draw i f both po in t s are i n f e r r e d
i f ( ( j o i n t 0 . TrackingState == Jo intTrack ingState . I n f e r r e d &&
j o i n t 1 . TrackingState == Jo intTrack ingState . I n f e r r e d ) && captureModeOn )
{
re turn ;
}

// We assume a l l drawn bones are i n f e r r e d un l e s s BOTH j o i n t s are tracked
Pen drawPen = t h i s . inferredBonePen ;
i f ( ( j o i n t 0 . TrackingState == Jo intTrack ingState . Tracked && j o i n t 1 . TrackingState ==
Jo intTrack ingState . Tracked ) | | comparingModeOn )
{
drawPen = t h i s . trackedBonePen ;
}

i f ( comparingModeOn && plotInSeatedMode )
{
i f ( ( jo intType0 != JointType . HipCenter ) && ( jointType1 != JointType . HipCenter ) &&
( jo intType0 != JointType . Spine ) && ( jointType1 != JointType . Spine ) &&
( jo intType0 != JointType . HipLeft ) && ( jo intType1 != JointType . HipLeft ) &&
( jo intType0 != JointType . KneeLeft ) && ( jointType1 != JointType . KneeLeft ) &&
( jo intType0 != JointType . AnkleLeft ) && ( jo intType1 != JointType . AnkleLeft ) &&
( jo intType0 != JointType . FootLeft ) && ( jo intType1 != JointType . FootLeft ) &&
( jo intType0 != JointType . HipRight ) && ( jo intType1 != JointType . HipRight ) &&
( jo intType0 != JointType . KneeRight ) && ( jo intType1 != JointType . KneeRight ) &&
( jo intType0 != JointType . AnkleRight ) && ( jo intType1 != JointType . AnkleRight ) &&
( jo intType0 != JointType . FootRight ) && ( jo intType1 != JointType . FootRight ) )
{
drawingContext . DrawLine ( drawPen , t h i s . SkeletonPointToScreen ( j o i n t 0 . Pos i t i on ) , t h i s . SkeletonPointToScreen ( j o i n t 1 . Pos i t i on ) ) ;
}
}

e l s e drawingContext . DrawLine ( drawPen , t h i s . SkeletonPointToScreen ( j o i n t 0 . Pos i t i on ) , t h i s . SkeletonPointToScreen ( j o i n t 1 . Pos i t i on ) ) ;
}

/// <summary>
/// Handles the check ing or unchecking o f the seated mode combo box



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 102

/// </summary>
/// <param name="sender "> ob j e c t sending the event </param>
/// <param name="e">event arguments</param>
pr i va t e void CheckBoxSeatedModeChanged ( ob j e c t sender , RoutedEventArgs e )
{
i f ( n u l l != t h i s . s en so r )
{
i f ( t h i s . checkBoxSeatedMode . IsChecked . GetValueOrDefault ( ) )
{
t h i s . s en so r . SkeletonStream . TrackingMode = SkeletonTrackingMode . Seated ;
seatedModeOn = true ;
}
e l s e
{
t h i s . s en so r . SkeletonStream . TrackingMode = SkeletonTrackingMode . Defau l t ;
seatedModeOn = f a l s e ;
}
}
}

//
//
// New methods :
//
//

/// <summary>
/// Load a sk e l e t on ob j e c t from a text f i l e
/// </summary>
/// <param name="dataLines"></param>
pr i va t e void loadSkelDataFromText ( s t r i n g [ ] dataLines , bool isModel )
{

i f ( dataLines [ 0 ] . S p l i t ( n u l l ) [ 4 ] == " SeatedModeOn " ) plotInSeatedMode = true ; // i f the
photo was taken in seated mode
e l s e i f ( dataLines [ 0 ] . S p l i t ( n u l l ) [ 4 ] == " SeatedModeOff " ) plotInSeatedMode = f a l s e ; // e l s e

f o r each ( s t r i n g l i n e in dataLines )
{



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 103

// c r e a t i n g a new point ( ho ld ing coo rd ina t e s )
var newPoint = new Ske le tonPoint
{
X = Convert . ToSingle ( l i n e . S p l i t ( n u l l ) [ 1 ] ) ,
Y = Convert . ToSingle ( l i n e . S p l i t ( n u l l ) [ 2 ] ) ,
Z = Convert . ToSingle ( l i n e . S p l i t ( n u l l ) [ 3 ] ) ,

} ;

// check ing the type o f the cur rent j o i n t ( cur rent l i n e )
i f ( l i n e . S p l i t ( n u l l ) [ 0 ] == " HipCenter " )
{

i f ( isModel ) // check ing the type o f the data
{
var newJoint = loadModelSkel . J o in t s [ JointType . HipCenter ] ; // c r e a t i n g new j o i n t
newJoint . Po s i t i on = newPoint ; // s e t t i n g the j o i n t ’ s p o s i t i o n
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadModelSkel . Jo i n t s [ JointType . HipCenter ] = newJoint ; // updating the sk e l e t on
}

e l s e // the same i s done i f the j o i n t i s not a " model " type , as shown below
{
var newJoint = loadPhotoSkel . J o i n t s [ JointType . HipCenter ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadPhotoSkel . Jo i n t s [ JointType . HipCenter ] = newJoint ;
}
}

// the same i s done f o r a l l the other j o i n t s

e l s e i f ( l i n e . S p l i t ( n u l l ) [ 0 ] == " Spine " )
{
i f ( isModel )
{
var newJoint = loadModelSkel . J o in t s [ JointType . Spine ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 104

loadModelSkel . Jo i n t s [ JointType . Spine ] = newJoint ;
}

e l s e
{
var newJoint = loadPhotoSkel . J o i n t s [ JointType . Spine ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadPhotoSkel . Jo i n t s [ JointType . Spine ] = newJoint ;
}
}

e l s e i f ( l i n e . S p l i t ( n u l l ) [ 0 ] == " ShoulderCenter " )
{
i f ( isModel )
{
var newJoint = loadModelSkel . J o in t s [ JointType . ShoulderCenter ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadModelSkel . Jo i n t s [ JointType . ShoulderCenter ] = newJoint ;
}

e l s e
{
var newJoint = loadPhotoSkel . J o i n t s [ JointType . ShoulderCenter ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadPhotoSkel . Jo i n t s [ JointType . ShoulderCenter ] = newJoint ;
}
}

e l s e i f ( l i n e . S p l i t ( n u l l ) [ 0 ] == " Head " )
{
i f ( isModel )
{
var newJoint = loadModelSkel . J o in t s [ JointType . Head ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadModelSkel . Jo i n t s [ JointType . Head ] = newJoint ;



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 105

}

e l s e
{
var newJoint = loadPhotoSkel . J o i n t s [ JointType . Head ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadPhotoSkel . Jo i n t s [ JointType . Head ] = newJoint ;
}
}

e l s e i f ( l i n e . S p l i t ( n u l l ) [ 0 ] == " Shou lderLe f t " )
{
i f ( isModel )
{
var newJoint = loadModelSkel . J o in t s [ JointType . Shou lderLe f t ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadModelSkel . Jo i n t s [ JointType . Shou lderLe f t ] = newJoint ;
}

e l s e
{
var newJoint = loadPhotoSkel . J o i n t s [ JointType . Shou lderLe f t ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadPhotoSkel . Jo i n t s [ JointType . Shou lderLe f t ] = newJoint ;
}
}

e l s e i f ( l i n e . S p l i t ( n u l l ) [ 0 ] == " ElbowLeft " )
{
i f ( isModel )
{
var newJoint = loadModelSkel . J o in t s [ JointType . ElbowLeft ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadModelSkel . Jo i n t s [ JointType . ElbowLeft ] = newJoint ;
}



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 106

e l s e
{
var newJoint = loadPhotoSkel . J o i n t s [ JointType . ElbowLeft ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadPhotoSkel . Jo i n t s [ JointType . ElbowLeft ] = newJoint ;
}
}

e l s e i f ( l i n e . S p l i t ( n u l l ) [ 0 ] == " WristLeft " )
{
i f ( isModel )
{
var newJoint = loadModelSkel . J o in t s [ JointType . WristLeft ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadModelSkel . Jo i n t s [ JointType . WristLeft ] = newJoint ;
}

e l s e
{
var newJoint = loadPhotoSkel . J o i n t s [ JointType . WristLeft ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadPhotoSkel . Jo i n t s [ JointType . WristLeft ] = newJoint ;
}
}

e l s e i f ( l i n e . S p l i t ( n u l l ) [ 0 ] == " HandLeft " )
{
i f ( isModel )
{
var newJoint = loadModelSkel . J o in t s [ JointType . HandLeft ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadModelSkel . Jo i n t s [ JointType . HandLeft ] = newJoint ;
}



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 107

e l s e
{
var newJoint = loadPhotoSkel . J o i n t s [ JointType . HandLeft ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadPhotoSkel . Jo i n t s [ JointType . HandLeft ] = newJoint ;
}
}

e l s e i f ( l i n e . S p l i t ( n u l l ) [ 0 ] == " ShoulderRight " )
{
i f ( isModel )
{
var newJoint = loadModelSkel . J o in t s [ JointType . ShoulderRight ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadModelSkel . Jo i n t s [ JointType . ShoulderRight ] = newJoint ;
}

e l s e
{
var newJoint = loadPhotoSkel . J o i n t s [ JointType . ShoulderRight ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadPhotoSkel . Jo i n t s [ JointType . ShoulderRight ] = newJoint ;
}
}

e l s e i f ( l i n e . S p l i t ( n u l l ) [ 0 ] == " ElbowRight " )
{
i f ( isModel )
{
var newJoint = loadModelSkel . J o in t s [ JointType . ElbowRight ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadModelSkel . Jo i n t s [ JointType . ElbowRight ] = newJoint ;
}

e l s e



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 108

{
var newJoint = loadPhotoSkel . J o i n t s [ JointType . ElbowRight ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadPhotoSkel . Jo i n t s [ JointType . ElbowRight ] = newJoint ;
}
}

e l s e i f ( l i n e . S p l i t ( n u l l ) [ 0 ] == " WristRight " )
{
i f ( isModel )
{
var newJoint = loadModelSkel . J o in t s [ JointType . WristRight ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadModelSkel . Jo i n t s [ JointType . WristRight ] = newJoint ;
}

e l s e
{
var newJoint = loadPhotoSkel . J o i n t s [ JointType . WristRight ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadPhotoSkel . Jo i n t s [ JointType . WristRight ] = newJoint ;
}
}

e l s e i f ( l i n e . S p l i t ( n u l l ) [ 0 ] == " HandRight " )
{
i f ( isModel )
{
var newJoint = loadModelSkel . J o in t s [ JointType . HandRight ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadModelSkel . Jo i n t s [ JointType . HandRight ] = newJoint ;
}

e l s e
{



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 109

var newJoint = loadPhotoSkel . J o i n t s [ JointType . HandRight ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadPhotoSkel . Jo i n t s [ JointType . HandRight ] = newJoint ;
}
}

e l s e i f ( l i n e . S p l i t ( n u l l ) [ 0 ] == " HipLeft " )
{
i f ( isModel )
{
var newJoint = loadModelSkel . J o in t s [ JointType . HipLeft ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadModelSkel . Jo i n t s [ JointType . HipLeft ] = newJoint ;
}

e l s e
{
var newJoint = loadPhotoSkel . J o i n t s [ JointType . HipLeft ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadPhotoSkel . Jo i n t s [ JointType . HipLeft ] = newJoint ;
}
}

e l s e i f ( l i n e . S p l i t ( n u l l ) [ 0 ] == " KneeLeft " )
{
i f ( isModel )
{
var newJoint = loadModelSkel . J o in t s [ JointType . KneeLeft ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadModelSkel . Jo i n t s [ JointType . KneeLeft ] = newJoint ;
}

e l s e
{
var newJoint = loadPhotoSkel . J o i n t s [ JointType . KneeLeft ] ;



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 110

newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadPhotoSkel . Jo i n t s [ JointType . KneeLeft ] = newJoint ;
}
}

e l s e i f ( l i n e . S p l i t ( n u l l ) [ 0 ] == " AnkleLeft " )
{
i f ( isModel )
{
var newJoint = loadModelSkel . J o in t s [ JointType . AnkleLeft ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadModelSkel . Jo i n t s [ JointType . AnkleLeft ] = newJoint ;
}

e l s e
{
var newJoint = loadPhotoSkel . J o i n t s [ JointType . AnkleLeft ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadPhotoSkel . Jo i n t s [ JointType . AnkleLeft ] = newJoint ;
}
}

e l s e i f ( l i n e . S p l i t ( n u l l ) [ 0 ] == " FootLeft " )
{
i f ( isModel )
{
var newJoint = loadModelSkel . J o in t s [ JointType . FootLeft ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadModelSkel . Jo i n t s [ JointType . FootLeft ] = newJoint ;
}

e l s e
{
var newJoint = loadPhotoSkel . J o i n t s [ JointType . FootLeft ] ;
newJoint . Po s i t i on = newPoint ;



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 111

newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadPhotoSkel . Jo i n t s [ JointType . FootLeft ] = newJoint ;
}
}

e l s e i f ( l i n e . S p l i t ( n u l l ) [ 0 ] == " HipRight " )
{
i f ( isModel )
{
var newJoint = loadModelSkel . J o in t s [ JointType . HipRight ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadModelSkel . Jo i n t s [ JointType . HipRight ] = newJoint ;
}

e l s e
{
var newJoint = loadPhotoSkel . J o i n t s [ JointType . HipRight ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadPhotoSkel . Jo i n t s [ JointType . HipRight ] = newJoint ;
}
}

e l s e i f ( l i n e . S p l i t ( n u l l ) [ 0 ] == " KneeRight " )
{
i f ( isModel )
{
var newJoint = loadModelSkel . J o in t s [ JointType . KneeRight ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadModelSkel . Jo i n t s [ JointType . KneeRight ] = newJoint ;
}

e l s e
{
var newJoint = loadPhotoSkel . J o i n t s [ JointType . KneeRight ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 112

loadPhotoSkel . Jo i n t s [ JointType . KneeRight ] = newJoint ;
}
}

e l s e i f ( l i n e . S p l i t ( n u l l ) [ 0 ] == " AnkleRight " )
{
i f ( isModel )
{
var newJoint = loadModelSkel . J o in t s [ JointType . AnkleRight ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadModelSkel . Jo i n t s [ JointType . AnkleRight ] = newJoint ;
}

e l s e
{
var newJoint = loadPhotoSkel . J o i n t s [ JointType . AnkleRight ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadPhotoSkel . Jo i n t s [ JointType . AnkleRight ] = newJoint ;
}
}

e l s e i f ( l i n e . S p l i t ( n u l l ) [ 0 ] == " FootRight " )
{
i f ( isModel )
{
var newJoint = loadModelSkel . J o in t s [ JointType . FootRight ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadModelSkel . Jo i n t s [ JointType . FootRight ] = newJoint ;
}

e l s e
{
var newJoint = loadPhotoSkel . J o i n t s [ JointType . FootRight ] ;
newJoint . Po s i t i on = newPoint ;
newJoint . TrackingState = Jo intTrack ingState . Tracked ;
loadPhotoSkel . Jo i n t s [ JointType . FootRight ] = newJoint ;



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 113

}
}
}
}

//
//
// New hand le r s :
//
//

// Buttons :

/// <summary>
/// Checks i f the " Photo " button was pre s s ed
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
pr i va t e void photoButton_Click ( ob j e c t sender , RoutedEventArgs e )
{
ske lPhoto = true ;
photoScreenLock = true ;
ske l sData . Clear ( ) ;

saveButton . IsEnabled = true ;
}

/// <summary>
/// Checks i f the " Save " button was pre s sed
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
pr i va t e void saveButton_Click ( ob j e c t sender , RoutedEventArgs e )
{
ske lSave = true ;
startingPhotoModeOn = f a l s e ;

// c o n t r o l e de botoes :
saveButton . IsEnabled = f a l s e ;



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 114

start ingPhotoButton . IsEnabled = f a l s e ;
l e f t S h i f t U s e r . IsEnabled = f a l s e ;
r i g h t S h i f t U s e r . IsEnabled = f a l s e ;
}

/// <summary>
/// Checks i f the " Load Model Photo " button was pre s sed
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
pr i va t e void loadModelButton_Click ( ob j e c t sender , RoutedEventArgs e )
{
loadModelPhoto = true ;
i f ( loadPhoto ) compareButton . IsEnabled = true ;
}

/// <summary>
/// Checks i f the " Load Photo " button was pre s sed
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
pr i va t e void loadPhotoButton_Click ( ob j e c t sender , RoutedEventArgs e )
{
loadPhoto = true ;
i f ( loadModelPhoto ) compareButton . IsEnabled = true ;
}

/// <summary>
/// Checks i f the "REC" button was pre s sed
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
pr i va t e void recButton_Click ( ob j e c t sender , RoutedEventArgs e )
{
photoScreenLock = f a l s e ;

// i n i c i o da gravacao :
i f ( ! recOn )
{



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 115

ske l sData . Clear ( ) ; // limpando ske l sData
sinalREC . IsChecked = true ;
recOn = true ;
startingPhotoModeOn = f a l s e ;

// c o n t r o l e dos botoes :
radioButtonCaptureMode . IsEnabled = f a l s e ;
radioButtonComparingMode . IsEnabled = f a l s e ;
radioButtonPhoto . IsEnabled = f a l s e ;
radioButtonVideo . IsEnabled = f a l s e ;
s tart ingPhotoButton . IsEnabled = f a l s e ;
l e f t S h i f t U s e r . IsEnabled = f a l s e ;
r i g h t S h i f t U s e r . IsEnabled = f a l s e ;
}

// fim da gravacao :
e l s e i f ( recOn )
{

sinalREC . IsChecked = f a l s e ;
recOn = f a l s e ;
startingPhotoModeOn = true ;

// c o n t r o l e dos botoes :
radioButtonCaptureMode . IsEnabled = true ;
radioButtonComparingMode . IsEnabled = true ;
radioButtonPhoto . IsEnabled = true ;
radioButtonVideo . IsEnabled = true ;
saveButton . IsEnabled = true ;
start ingPhotoButton . IsEnabled = true ;
l e f t S h i f t U s e r . IsEnabled = true ;
r i g h t S h i f t U s e r . IsEnabled = true ;

}
}

/// <summary>
/// Checks i f the " Load Video " button was pre s sed



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 116

/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
pr i va t e void loadVideoButton_Click ( ob j e c t sender , RoutedEventArgs e )
{
loadVideo = true ;
videoLengthCountUser = ( Di rec to ry . GetF i l e s ( videoCorePathUser , " * " ) . Length ) − 1 ;

// c o n t r o l e de botoes :
l e f t S h i f t U s e r . IsEnabled = true ;
r i g h t S h i f t U s e r . IsEnabled = true ;
startLoopUser . IsEnabled = true ;
syncButton . IsEnabled = true ;
i f ( loadModelVideo ) compareButton . IsEnabled = true ;
loopMinusButton . IsEnabled = true ;
}

/// <summary>
/// Checks i f the " S h i f t (L ) " button ( l e f t s c r e en ) was pre s sed
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
pr i va t e void LeftShi f tModel_Cl ick ( ob j e c t sender , RoutedEventArgs e )
{
shi ftValueModel −−;
}

/// <summary>
/// Checks i f the " S h i f t (R) " button ( l e f t s c r e en ) was pre s sed
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
pr i va t e void RightShi ftModel_Click ( ob j e c t sender , RoutedEventArgs e )
{
shi f tValueModel++;
}

/// <summary>
/// Checks i f the " Sta r t Loop " button ( l e f t s c r e en ) was pre s sed



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 117

/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
pr i va t e void StartLoopModel_Click ( ob j e c t sender , RoutedEventArgs e )
{
loopOnModel = true ;

// c o n t r o l e dos botoes :
startLoopModel . IsEnabled = f a l s e ;
stopLoopModel . IsEnabled = true ;

radioButtonCaptureMode . IsEnabled = f a l s e ;
radioButtonComparingMode . IsEnabled = f a l s e ;
radioButtonPhoto . IsEnabled = f a l s e ;
radioButtonVideo . IsEnabled = f a l s e ;

l e f t S h i f t M o d e l . IsEnabled = f a l s e ;
r i gh tSh i f tMode l . IsEnabled = f a l s e ;
loadModelVideoButton . IsEnabled = f a l s e ;
}

/// <summary>
/// Checks i f the " Stop Loop " button ( l e f t s c r e en ) was pre s sed
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
pr i va t e void StopLoopModel_Click ( ob j e c t sender , RoutedEventArgs e )
{
loopOnModel = f a l s e ;

// c o n t r o l e dos botoes :
startLoopModel . IsEnabled = true ;
stopLoopModel . IsEnabled = f a l s e ;

i f ( stopLoopUser . IsEnabled == f a l s e )
{
radioButtonCaptureMode . IsEnabled = true ;
radioButtonComparingMode . IsEnabled = true ;
radioButtonPhoto . IsEnabled = true ;



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 118

radioButtonVideo . IsEnabled = true ;
}

l e f t S h i f t M o d e l . IsEnabled = true ;
r i gh tSh i f tMode l . IsEnabled = true ;
loadModelVideoButton . IsEnabled = true ;
}

/// <summary>
/// Checks i f the " S h i f t (L ) " button ( r i g h t s c r e en ) was pre s sed
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
pr i va t e void Le f tSh i f tUse r_Cl i ck ( ob j e c t sender , RoutedEventArgs e )
{
sh i f tVa lueUser −−;
}

/// <summary>
/// Checks i f the " S h i f t (R) " button ( r i g h t s c r e en ) was pre s s ed
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
pr i va t e void RightShi f tUser_Cl ick ( ob j e c t sender , RoutedEventArgs e )
{
sh i f tVa lueUse r++;
}

/// <summary>
/// Checks i f the " Sta r t Loop " button ( r i g h t s c r e en ) was pre s sed
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
pr i va t e void StartLoopUser_Click ( ob j e c t sender , RoutedEventArgs e )
{
loopOnUser = true ;

// c o n t r o l e dos botoes :
startLoopUser . IsEnabled = f a l s e ;



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 119

stopLoopUser . IsEnabled = true ;

radioButtonCaptureMode . IsEnabled = f a l s e ;
radioButtonComparingMode . IsEnabled = f a l s e ;
radioButtonPhoto . IsEnabled = f a l s e ;
radioButtonVideo . IsEnabled = f a l s e ;

l e f t S h i f t U s e r . IsEnabled = f a l s e ;
r i g h t S h i f t U s e r . IsEnabled = f a l s e ;
loadVideoButton . IsEnabled = f a l s e ;
}

/// <summary>
/// Checks i f the " Stop Loop " button ( r i g h t s c r e en ) was pre s sed
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
pr i va t e void StopLoopUser_Click ( ob j e c t sender , RoutedEventArgs e )
{
loopOnUser = f a l s e ;

// c o n t r o l e dos botoes :
startLoopUser . IsEnabled = true ;
stopLoopUser . IsEnabled = f a l s e ;

i f ( stopLoopModel . IsEnabled == f a l s e )
{
radioButtonCaptureMode . IsEnabled = true ;
radioButtonComparingMode . IsEnabled = true ;
radioButtonPhoto . IsEnabled = true ;
radioButtonVideo . IsEnabled = true ;
}

l e f t S h i f t U s e r . IsEnabled = true ;
r i g h t S h i f t U s e r . IsEnabled = true ;
loadVideoButton . IsEnabled = true ;
}

/// <summary>



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 120

/// Checks i f the " Sync " button was pre s sed
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
pr i va t e void SyncButton_Click ( ob j e c t sender , RoutedEventArgs e )
{
shi f tValueModel = 0 ;
sh i f tVa lueUse r = 0 ;
}

/// <summary>
/// Checks i f the " Loop +" button was pre s sed
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
pr i va t e void loopPlusButton_Click ( ob j e c t sender , RoutedEventArgs e )
{
loopDelaySetup −−;
i f ( loopDelaySetup <= 0) loopPlusButton . IsEnabled = f a l s e ;
}

/// <summary>
/// Checks i f the " Loop −" button was pre s sed
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
pr i va t e void loopMinusButton_Click ( ob j e c t sender , RoutedEventArgs e )
{
loopDelaySetup++;
i f ( loopDelaySetup > 0) loopPlusButton . IsEnabled = true ;
}

/// <summary>
/// Checks i f the " Load Model Video " button was pre s sed
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
pr i va t e void loadModelVideoButton_Click ( ob j e c t sender , RoutedEventArgs e )
{



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 121

loadModelVideo = true ;
videoLengthCountModel = ( Di rec to ry . GetF i l e s ( videoCorePathModel ) . Length ) − 1 ;

// c o n t r o l e de botoes :
l e f t S h i f t M o d e l . IsEnabled = true ;
r i gh tSh i f tMode l . IsEnabled = true ;
startLoopModel . IsEnabled = true ;
syncButton . IsEnabled = true ;
i f ( loadVideo ) compareButton . IsEnabled = true ;
loopMinusButton . IsEnabled = true ;
}

/// <summary>
/// Checks i f the " S ta r t i ng Photo " button was pre s sed
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
pr i va t e void start ingPhotoButton_Click ( ob j e c t sender , RoutedEventArgs e )
{
s t a r t i ngPhotoSe l e c t ed = true ;
}

/// <summary>
/// Checks i f the " Compare " button was pre s sed
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
pr i va t e void compareButton_Click ( ob j e c t sender , RoutedEventArgs e )
{
Lis t <Pose> compareListUser = new List <Pose >() ;
L i s t <Pose> compareListModel = new List <Pose >() ;
double f i n a l S c o r e = 0 ;
s t r i n g f i n a l S c o r e S t r i n g ;

i f ( t h i s . radioButtonPhoto . IsChecked . GetValueOrDefault ( ) ) // i f comparing photos
{
// user photo
KHMESDK1_8. Ske le ton compareSkeletonUser = new KHMESDK1_8. Ske l e ton ( loadPhotoSkel ) ;
Pose comparePoseUser = new Pose ( compareSkeletonUser ) ;



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 122

// model photo
KHMESDK1_8. Ske le ton compareSkeletonModel = new KHMESDK1_8. Ske le ton ( loadModelSkel ) ;
Pose comparePoseModel = new Pose ( compareSkeletonModel ) ;

// f i n a l s c o r e
f i n a l S c o r e = Evaluat ion . Spheres ( comparePoseModel , comparePoseUser ,
radiusPose , minScorePose ) ;

f o r each ( Jo int j o i n t in loadPhotoSkel . Jo i n t s )
{
Console . WriteLine ( " Jo int Type = " + j o i n t . JointType +
" Jo int Pos i t i on X, Y, Z = " + j o i n t . Po s i t i on .X + j o i n t . Po s i t i on .Y +
j o i n t . Po s i t i on . Z ) ;
}
}

e l s e i f ( t h i s . radioButtonVideo . IsChecked . GetValueOrDefault ( ) ) // e l s e
i f comparing v ideos
{
f o r ( i n t j = 0 ; j < videoLengthCountUser ; j++) // user
{
// read ing movement data
s t r i n g [ ] photoLines = F i l e . ReadAllLines ( Path . Combine ( videoCorePathUser ,
videoCoreNameUser + j + " . txt " ) ) ;
loadSkelDataFromText ( photoLines , f a l s e ) ;

// c r e a t i n g movement l i s t
KHMESDK1_8. Ske le ton compareSkeletonUser =
new KHMESDK1_8. Ske l e ton ( loadPhotoSkel ) ;
Pose comparePoseUser = new Pose ( compareSkeletonUser ) ;
compareListUser . Add( comparePoseUser ) ;

}

f o r ( i n t j = 0 ; j < videoLengthCountModel ; j++) // model
{
// read ing movement data



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 123

s t r i n g [ ] modelLines = F i l e . ReadAllLines ( Path . Combine ( videoCorePathModel ,
videoCoreNameModel
+ j + " . txt " ) ) ;

loadSkelDataFromText ( modelLines , t rue ) ;

// c r e a t i n g movement l i s t
KHMESDK1_8. Ske le ton compareSkeletonModel =
new KHMESDK1_8. Ske l e ton ( loadModelSkel ) ;
Pose comparePoseModel = new Pose ( compareSkeletonModel ) ;
compareListModel . Add( comparePoseModel ) ;

}

// c r e a t i n g the movements
Movement compareMovementUser = new Movement( compareListUser ) ;
Movement compareMovementModel = new Movement( compareListModel ) ;

// f i n a l s c o r e
f i n a l S c o r e = Evaluat ion . Spheres ( compareMovementModel , compareMovementUser ,
radiusMovement , radiusStep , minScoreMovement , s co reStep ) ;

}

// p l o t t i n g r e s u l t s
f i n a l S c o r e S t r i n g = f i n a l S c o r e . ToString ( ) ;
F i l e . WriteAllText ( Path . Combine ( compareResultPath , compareResultName + " . txt " ) ,
f i n a l S c o r e S t r i n g ) ;
textBox . Clear ( ) ;
textBox . Text = f i n a l S c o r e S t r i n g ;

}

// Radio Buttons :

/// <summary>
/// Checks changes on the " Capture Mode" rad io button s t a t e
/// </summary>



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 124

/// <param name="sender"></param>
/// <param name="e"></param>
pr i va t e void RadioButtonCaptureModeChanged ( ob j e c t sender ,
RoutedEventArgs e )
{
i f ( t h i s . radioButtonCaptureMode . IsChecked . GetValueOrDefault ( ) )
{
captureModeOn = true ;
loadModelPhoto = f a l s e ;
loadPhoto = f a l s e ;
loadVideo = f a l s e ;
loadModelVideo = f a l s e ;
startingPhotoModeOn = f a l s e ;
loopDelaySetup = 0 ;
loopDelayModel = 0 ;
loopDelayUser = 0 ;
}

e l s e
{
captureModeOn = f a l s e ;
}
}

/// <summary>
/// Checks changes on the " Comparing Mode" rad io button s t a t e
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
pr i va t e void RadioButtonComparingModeChanged ( ob j e c t sender ,
RoutedEventArgs e )
{
compareButton . IsEnabled = f a l s e ;

i f ( t h i s . radioButtonComparingMode . IsChecked . GetValueOrDefault ( ) )
{
comparingModeOn = true ;
photoScreenLock = f a l s e ;



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 125

// c o n t r o l e de botoes :
saveButton . IsEnabled = f a l s e ;
s tart ingPhotoButton . IsEnabled = f a l s e ;
photoButton . IsEnabled = f a l s e ;
recButton . IsEnabled = f a l s e ;
l e f t S h i f t U s e r . IsEnabled = f a l s e ;
r i g h t S h i f t U s e r . IsEnabled = f a l s e ;

i f ( radioButtonPhoto . IsChecked == true )
{
loadModelButton . IsEnabled = true ;
loadPhotoButton . IsEnabled = true ;
}

e l s e i f ( radioButtonVideo . IsChecked == true )
{
loadModelVideoButton . IsEnabled = true ;
loadVideoButton . IsEnabled = true ;
}
}

e l s e
{
comparingModeOn = f a l s e ;

// c o n t r o l e de botoes :
i f ( radioButtonPhoto . IsChecked == true ) photoButton . IsEnabled = true ;
e l s e i f ( radioButtonVideo . IsChecked == true ) recButton . IsEnabled = true ;
loadModelButton . IsEnabled = f a l s e ;
loadPhotoButton . IsEnabled = f a l s e ;
loadModelVideoButton . IsEnabled = f a l s e ;
loadVideoButton . IsEnabled = f a l s e ;
l e f t S h i f t U s e r . IsEnabled = f a l s e ;
r i g h t S h i f t U s e r . IsEnabled = f a l s e ;
startLoopUser . IsEnabled = f a l s e ;
l e f t S h i f t M o d e l . IsEnabled = f a l s e ;
r i gh tSh i f tMode l . IsEnabled = f a l s e ;
startLoopModel . IsEnabled = f a l s e ;
syncButton . IsEnabled = f a l s e ;



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 126

loopMinusButton . IsEnabled = f a l s e ;
loopPlusButton . IsEnabled = f a l s e ;
}
}

/// <summary>
/// Checks changes on the " Photo " rad io button s t a t e
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
pr i va t e void RadioButtonPhotoChanged ( ob j e c t sender , RoutedEventArgs e )
{
startingPhotoModeOn = f a l s e ;

i f ( t h i s . radioButtonPhoto . IsChecked . GetValueOrDefault ( ) )
{
loadVideo = f a l s e ;
loadModelVideo = f a l s e ;
loopDelaySetup = 0 ;
loopDelayModel = 0 ;
loopDelayUser = 0 ;
}

e l s e
{
loadModelPhoto = f a l s e ;
loadPhoto = f a l s e ;
}
}

/// <summary>
/// Checks changes on the " Video " rad io button s t a t e
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
pr i va t e void RadioButtonVideoChanged ( ob j e c t sender , RoutedEventArgs e )
{
saveButton . IsEnabled = f a l s e ;
s tart ingPhotoButton . IsEnabled = f a l s e ;



APÊNDICE C. Código Fonte: Aplicativo Kinect V1 127

l e f t S h i f t U s e r . IsEnabled = f a l s e ;
r i g h t S h i f t U s e r . IsEnabled = f a l s e ;
compareButton . IsEnabled = f a l s e ;

i f ( t h i s . radioButtonVideo . IsChecked . GetValueOrDefault ( ) )
{

// c o n t r o l e de botoes :
i f ( radioButtonCaptureMode . IsChecked == true ) recButton . IsEnabled = true ;

e l s e i f ( radioButtonComparingMode . IsChecked == true )
{
loadVideoButton . IsEnabled = true ;
loadModelVideoButton . IsEnabled = true ;
}

photoButton . IsEnabled = f a l s e ;
loadModelButton . IsEnabled = f a l s e ;
loadPhotoButton . IsEnabled = f a l s e ;
}

e l s e
{
// c o n t r o l e de botoes :
i f ( radioButtonCaptureMode . IsChecked == true ) photoButton . IsEnabled = true ;

e l s e i f ( radioButtonComparingMode . IsChecked == true )
{
loadModelButton . IsEnabled = true ;
loadPhotoButton . IsEnabled = true ;
}

loadModelVideoButton . IsEnabled = f a l s e ;
loadVideoButton . IsEnabled = f a l s e ;
recButton . IsEnabled = f a l s e ;
l e f t S h i f t U s e r . IsEnabled = f a l s e ;
r i g h t S h i f t U s e r . IsEnabled = f a l s e ;
startLoopUser . IsEnabled = f a l s e ;
l e f t S h i f t M o d e l . IsEnabled = f a l s e ;


