UNIVERSIDADE DE SAO PAULO

DEPARTAMENTO DE ENGENHARIA MECATRONICA E DE
SISTEMAS MECANICOS

BACHARELADO EM ENGENHARIA MECATRONICA

Gianlucci B. Minarelli e Renan R. do A. Gurgel
Biblioteca de funcoes de avaliagcao de pose e movimento para
o Microsoft Kinect

Sao Paulo
2015

Gianlucci B. Minarelli e Renan R. do A. Gurgel

Biblioteca de funcgoes de avaliagcao de pose e movimento para
o Microsoft Kinect

Monografia apresentada no Departamento de
Engenharia Mecatronica e Sistemas Mecani-
cos da Escola Politécnica da Universidade de
Sao Paulo para obtengao do titulo de Enge-
nheiro. Area de Concentracio: Engenharia

Mecatronica

Orientador: Fabricio Junqueira

Doutor em Engenharia Mecatronica - USP

Sao Paulo
2015

Catalogacao-na-publicacéo

Minarelli, Gianlucci

Biblioteca de fun¢des de avaliagdo de pose e movimento para o Microsoft
Kinect / G. Minarelli, R. Gurgel -- Sdo Paulo, 2015.

128 p.

Trabalho de Formatura - Escola Politécnica da Universidade de Sao
Paulo. Departamento de Engenharia Mecatrénica e de Sistemas Mecénicos.

1.Microsoft Kinect 2.Avaliagdo de Pose e Movimento Humanos
l.Universidade de Sao Paulo. Escola Politécnica. Departamento de
Engenharia Mecatronica e de Sistemas Mecanicos Il.t. 11l.Gurgel, Renan

Termo de Originalidade

Este relatorio é apresentado como requisito parcial para obtencao do titulo de Engenheiro
na Escola Politécnica da Universidade de Sdo Paulo. E o produto do nosso préprio trabalho,
exceto onde indicado no texto. O relatorio pode ser livremente copiado e distribuido desde

que a fonte seja citada.

Resumo

A possibilidade de aplicacao do Kinect para avaliacdo de movimento em areas diversas como
fisioterapia ou treinamento gera a necessidade de uma biblioteca de fun¢ées de comparagao
de movimentos e poses. O codigo aberto permite padronizacao e evita retrabalho. Um
estudo sobre funcionamento e fontes de erro do Kinect foi realizado. Foram analisadas as
diferentes opgoes para SDK e os tipos de dados. Usaram-se os diagramas da linguagem
UML para auxiliar a apresentacao das especificacoes do projeto. Uma biblioteca que realiza
comparagoes de poses e movimentos genéricos foi implementada. Bibliotecas wrappers
auxiliares foram implementadas para realizar a interface entre a biblioteca de avaliagao e

as duas versoes da Microsoft Kinect SDK contempladas.

Palavras-chaves: Kinect. Biblioteca de Fungoes. Avaliagdo de Movimento Humano.

Abstract

The possibility of applying the Kinect for evaluating human movement in activities such
as rehabilitation or training creates the need of a movement and pose comparison library.
Open-source code allows standardization and avoids unnecessary work. The Kinect was
analyzed along with is error sources. The different available SDKs and data structures
were compared. UML diagrams were used to help the project and documentation of the
library. A pose and movement comparison library was implemented. Wrapper libraries
were implemented between the evaluation library and each version of the Microsoft Kinect
SDK.

Keywords: Kinect. Library. Human Movement Evaluation.

Sumario

SUMANIO) e 5

[Cista deilustracées]« uuneen. 7
Listadetabelas, 9

il INTRODUCAO| . . . i ittt e e e e e e e e e e e e e 10
1.1 Objetivos| 11
13

13

3 T EVANTAMENTO DAS ALTERNATIVASI 16
3.1 SDK (Software Development Kit)| 16
(3.2 Tipos de dados de posicao] 17
4 PROJETOI e e e e e e e e e 18
4.1 Requisitos de projeto|. 18
4.2 Diagrama de Casos de Uso| 18
4.3 Diagramas de Atividade|o 19
4.3.1 Comparar Posicdo a uma Referéncia (CDUOL)[. 19
14.3.2 Comparar Movimento a uma Referéncia (CDU02)| 20
4.3.3 Definir Parametros de Comparacdo (CDUO3)[. 20
4.4 Diagrama de Classes| 21
4.5 Definicao das Coordenadas| 23
4.5.1 Angulos paraa SDK 1.8] 23
4.5.2 Angulos para a SDK 2.0l 25
4.6 Algoritmos de comparacao| oL 27
4.6.1 Posed 28
[4.6.2 Movimentos| 28
4.7 Aplicativo| 30
471 Interface Grafica e Comandos| 30
5 TESTES E RESULTADOS|, 34

IAPENDICES| 44

APE —= . - |
| CAO SEQUENCIAL| vt e e . 45
(A.1 Wrapper SDK 1.8] 45
A2 Wrapper SDK2.00 46
A.3 __ KinectHumanMovementEvaluation.cs 47

IAPENDICE B — CODIGO FONTE: ALGORITMO PARA TESTES |
| DE PRECISAOQ!. i i i 71
B.1 testgenerator.pyl 71
B.2 jointsPlotter.py| 72
B.3 genParmsPlotter.pyl, 77

IAPENDICE C — CODIGO FONTE: APLICATIVO KINECT V1| .. 81

Lista de ilustracoes

[Figura 1 — Posi¢ao da biblioteca no fluxo (simplificado) de dados| 10
[Figura 2 — Aspecto geometrico do campo de visao do Kinect para Windows; o |
| valor dos parametros depende da configuracao escolhida] 13
[Figura 3 — Angulos horizontal e vertical do campo de visdo do Kinect para Windows| 14
[Figura 4 — Dependendo do formato dos objetos analisados, alguns pontos (como |
| o indicado pela letra C) podem nao ser recebidos pela camera de |
| infravermelhol 15
[Figura 5 — Diagrama de casos deusol 19
[Figura 6 — Diagrama de atividades de Comparar Posicao a uma Referencia| 19
[Figura 7 — Diagrama de atividades de Comparar Movimento a uma Referéncial . . 20
[Figura 8 — Diagrama de atividades de Definir Parametros de Comparacaol 20
[Figura 9 — Diagrama de classes| L. 21
[Figura 10 — Representacao grafica da estrutura de dados skeleton, da SDK 1.8/ . . . 23
[Figura 11 — Representacao grafica da estrutura de dados skeleton, da SDK 2.0/ . . . 25
[Figura 12 — Representacao grafica bidimensional das regioes de avaliacao e de transicao| 29
[Figura 13 — As flechas verdes sao para valores verdadeiros das condicoes testadas e [
| as vermelhas, para falsos. Os tracos azuis indicam leitura da proxima |
| pose do movimento tentatival] 29
[Figura 14 — Intertace grafica do software desenvolvido.| 30
[Figura 15 — Sucesso (excetuando-se a tltima esfera) na avaliagao de dois movimentos, |
| o segundo gerado a partir do primeiro com adicao de ruido branco de |
| desvio-padrao 0,1.|o 34
[Figura 16 — Falha na avaliacao de dois movimentos, mantendo-se os parametros mas |
| com o segundo movimento gerado a partir do primeiro com adicao de |
| ruido branco de desvio-padrao 0,2.[. 34
[Figura 17 — Sucesso (excetuando-se a tltima esfera) na avaliagao de dois movimentos, |
| o segundo gerado a partir do primeiro com adicao de ruido branco de |
| desvio-padrao 0,2, mas com um passo de raio maior e outros parametros |
I mantidos.) 35
[Figura 18 — Dois momentos do movimento realizado para testar a captura de dados |
| pelo sensor e seu registro na estrutura de dados presente na SDK.| . . . 36
[Figura 19 — Coordenadas cartesianas (da esquerda para a direita, X, Y e Z) da junta |
| mao direita, com eixos verticals em metros e horizontais em indice da |
| SEQUENCIA.] .+ © v v v v v e e e e e e e e 36

[Figura 20 — Coordenadas cartesianas (da esquerda para a direita, X, Y e Z) da junta |

| pulso direito, com eixos verticais em metros e horizontais em indice da |

| SEQUENCIA.] .« + v v v v v e e e e e e e e e 37

[Figura 21 — Coordenadas cartesianas (da esquerda para a direita, X, Y e Z) da junta |

| cotovelo direito, com eixos verticals em metros e horizontais em indice |

| da sequencia.| 37

[Figura 22 — Coordenadas cartesianas (da esquerda para a direita, X, Y e Z) da junta |

| ombro direito, com eixos verticais em metros e horizontais em indice da |

| SEQUENCIA.] .+« v v v v e e e e e e e e e e 37

[Figura 23 — 'Irés momentos do movimento realizado para testar o calculo de angulos |

| como parametros genéricos pela biblioteca.l. 38

IFigura 24 — Angulo do cotovelo, como definido na secio [4.5.2L A esquerda, valores |

| para o movimento considerado 'padrao’; a direita, para a tentativa de |

| reproducao. Eixos verticais em radianos e horizontais em indice da |

| SEQUENCIA.| e e e e 38

IFigura 25 — Angulo do cotovelo, como definido na secio [4.5.2L A esquerda, valores |

| para o movimento considerado "padrao’; a direita, para a tentativa de [

| reproducao. Eixos verticais em radianos e horizontais em indice da |

| SEQUENCIA.] .« + v v v v e e e e e e e 39

Lista de tabelas

[Tabela 1 — Comparagao entre os SDKs considerados para o projeto (OPENKI- |
| NECT] 2014) (MICROSOFT] 20155) (OPENNI,2015) 16

[Tabela 2 — Comparacao entre os tipos de dados de posicao para o projeto|

10

1 Introducao

A necessidade de analisar o movimento humano e avalid-lo seguindo algum critério
existe em diferentes areas, como fisioterapia, treinamentos industriais, esporte, dentre
outras. A utilizacdo do sensor MS Kinect para essa tarefa é interessante devido ao seu

baixo custo e facil integracao ao sistema operacional Windows, amplamente disseminado.

O presente projeto propoe o desenvolvimento de uma biblioteca que, utilizando os
dados obtidos pelo Kinect, sera capaz de avaliar de forma quantitativa a precisdo de um
movimento captado pelo sensor em relacdo a um movimento de referéncia previamente
registrado. A proposta é motivada pela possibilidade de desenvolvimento de projetos de
engenharia voltados para a reabilitacao ou treinamento e que se valham de ambientes de

realidade virtual utilizando o Kinect.

Tal biblioteca possibilita nao s6 uma padronizacao no modo como a avaliacao
de movimentos é realizada em diversos aplicativos que utilizam o Kinect, através do
reaproveitamento do coédigo desenvolvido, como também uma evolucdo continua das

técnicas de avaliagdo implementadas (projeto Open Source).

),
& % Microsoft
Kinect SDK

Avaliagao
(0% — 100%)

Figura 1 — Posicao da biblioteca no fluxo (simplificado) de dados

A reutilizagao do codigo da biblioteca aqui desenvolvida em outros projetos:

— Evitard a repeticao do esfor¢o de projeto e implementacgao de algoritmos de avaliagao
durante o desenvolvimento de aplicativos para o Kinect, cujos desenvolvedores nem

sempre estao aptos a desenvolver funcgoes de avaliagdo de movimentos confiaveis.

— Garantirda a homogeneidade dos resultados obtidos por esses aplicativos, possibili-

tando, por exemplo, a comparacgao de resultados obtidos por diferentes softwares.

— Garantird a qualidade de tais resultados.

Capitulo 1. Introdugdo 11

A homogenizacao das técnicas de avaliacao dos movimentos captados pelo sensor
promovera, como mencionado, o aperfeicoamento continuo dessas técnicas e a otimizacao,
com o passar do tempo, dos resultados obtidos, uma vez que a biblioteca desenvolvida
estard sujeita a constantes aprimoramentos por meio de atualizagoes realizadas pela propria

comunidade de desenvolvedores que se valham de tais resultados.

Apesar do sistema descrito apresentar uma grande abrangéncia em diferentes
areas (no desenvolvimento de jogos, aplicativos voltados para o setor de servigos, na
indtstria, etc), o projeto aqui proposto ird se limitar a andlise de movimento de pessoas,
focando-se assim, de uma forma geral, em aplicagoes nas dreas médicas (reabilitagao), de

entretenimento (jogos) e voltadas ao treinamento de pessoal especializado.

A validade da avaliagdo de movimentos, usando o Kinect, para fins médicos, como
andlise de movimentos tipicos do mal de Parkinson (GALNA| 2014), de crises emocionais
em criangas (YU} 2011) ou de exercicios de reabilitagao (BO)| 2011, mostra o potencial do
projeto na area médica. As fungoes implementadas poderiam ser utilizadas, por exemplo,
no desenvolvimento de jogos voltados a reabilitacao e com uma dificuldade (intensidade

do exercicio) auto-regulavel, de acordo com o feedback obtido com o auxilio da biblioteca.

1.1 Objetivos

O objetivo desse trabalho é projetar e implementar uma biblioteca de fungoes de ava-
liagdo de movimentos capturados pelo Kinect, para ser utilizada durante o desenvolvimento

de aplicativos que se valham de tais métodos.

Deseja-se um codigo que apresente eficiéncia de tempo de processamento e manute-
nibilidade, para que a publicacao da biblioteca em c6digo aberto possibilite o maior niimero
de aplicagoes das fungoes de avaliacao de movimento, evitando retrabalho e fomentando
o desenvolvimento dessa classe de algoritmos. Para atingir esses objetivos, as seguintes

metas foram estabelecidas:

— Familiarizacao com a linguagem C#.
— Familiarizacao com as classes e métodos oferecidos pela SDK utilizada.

— Familiarizacao com as ferramentas de desenvolvimento de aplicativos oferecidas pelo

software Visual Studio.
— Projeto e implementacao da biblioteca.
— Implementagao de um algoritmo para o teste de precisao da biblioteca desenvolvida.

— Desenvolvimento de um aplicativo demonstrativo das funcionalidades da biblioteca

implementada.

Capitulo 1. Introdugdo 12

— Implementacao de fungbes de processamento de imagens (poses) e videos (movi-
mentos) no aplicativo desenvolvido, de modo a simular funges passiveis de serem

implementadas em softwares que possam utilizar a biblioteca desenvolvida.
— Implementacao e integragao entre a biblioteca e o aplicativo projetados.

— Realizacao de testes demonstrativos da integracao entre as fungoes do aplicativo
desenvolvido (tratamento de poses e movimentos) e fungoes de avaliagdo de poses e

movimentos da biblioteca.

13

2 Revisao Bibliografica

2.1 Funcionamento do Kinect e fontes de erro

Primeiramente, para prever qual precisdo poderd ser atingida usando-se o Kinect, é
necessario compreender as limitagdes dos sensores do Kinect e, portanto, seu funcionamento.
O Kinect V1 dispoe de duas cAmeras: uma RGB (do inglés, vermelho, verde e azul) e
uma “camera de profundidade” (baseada em infravermelho), além de um microfone
(MICROSOFT, 2015a)). O Kinect V2 tem a caAmera de cores HD 1080p e microfones
aprimorados (MICROSOEFT|, 2015¢]).

Como mostrado na Figura [2, o campo de visao do Kinect V1 para Windows tem o
valor de seus pardmetros dependentes da configuragao escolhida (modos pré-programados):
no modo “préoximo” de configuracao, tem-se r1 = 0,4m, r2 = 0,8m, Rl = 2,5m e
R2 = 3m; no modo “padrao”, tem-se r1 = 0,8m, r2 =1,2m, R1 = 3,5m e R2 = 4m. Na
zona de leitura étima, representada na Figura [2 tem-se melhor precisdo e reatividade
(MICROSOFT] 2015al).

B leitura 6tima
limites fisicos

R,

R1

Figura 2 — Aspecto geométrico do campo de visao do Kinect para Windows; o valor dos
parametros depende da configuracao escolhida

Os limites de adngulo de visao do Kinect V1 para Windows (ver Figura |3) sao
a = 57,5° (horizontal) e § = 43,5° (vertical, podendo ser rotacionado de 27° para cima

ou para baixo gragas ao suporte articulado).

O Kinect V2 apresenta um campo de visdo mais amplo (tanto na horizontal quanto
na vertical) (MICROSOFT] [2015¢).

Capitulo 2. Revisao Bibliogrifica 14

Vista superior Vista lateral

Figura 3 — Angulos horizontal e vertical do campo de visdo do Kinect para Windows

A captura de imagens em cores e em infravermelho se faz de forma simultanea,

com uma taxa de aquisi¢do de aproximadamente 30 fps (do inglés, quadros por segundo)

para ambos os sensores (KHOSHELHAM]| 2011) (MICROSOFT} 2015¢]).

Para fazer a medigao de profundidade, a fonte do laser infravermelho emite um tinico
feixe, que é entao difratado para projetar uma rede de pontos no volume do campo de visao
do Kinect, para finalmente ser captada pela camera de infravermelho. Esses pontos sao
entdo comparados a uma projegdo num plano de referéncia (informagoes provenientes da
calibragao) e, através de uma triangulagao, obtém-se os valores de profundidade. Ha, neste
processo, fontes de incerteza: as distorgoes provocadas pelas lentes e o desalinhamento
com os eixos da camera RGB (KHOSHELHAM; [2011). A acuracia de profundidade do
sensor V2 é trés vezes maior que a do VI (MICROSOFT) 2015c).

Uma outra fonte de incertezas é a refletancia dos objetos analisados pelo Kinect.
O usuario devera evitar roupas pretas ou com detalhes ou acessérios refletivos, pois isso
poderd interferir com a leitura do infravermelho (MICROSOFT} 2015a). A iluminacao
do ambiente também influencia as medi¢oes, mas o sensor V2 é bem mais robusto nesse
aspecto do que o sensor VI (MICROSOFT)| 2015c).

O fluxo das informagoes de profundidade lidas se faz usando inteiros de 11 bits
(um inteiro desses para cada ponto da rede e para cada instante de tempo em que houve
uma leitura), sendo que um deles indica apenas se aquele ponto foi encontrado na imagem
analisada ou nao (ver Figura . Ou seja, a disparidade constatada é discretizada em 1024
niveis, incorrendo numa perda de informagao (KHOSHELHAM]| 2011).

Uma alternativa que melhora sensivelmente a qualidade das informagoes obtidas é
o uso de multiplos Kinects em vez de apenas um (desde que nao haja sobreposigao dos
feixes, o que gera interferéncia entre as malhas lidas) (TONG/ 2012) (RAKPRAYOON|

2011)). Isso potencialmente evitaria que o Kinect interpretasse objetos distintos como

Capitulo 2. Revisao Bibliogrifica 15

Figura 4 — Dependendo do formato dos objetos analisados, alguns pontos (como o indicado
pela letra C) podem nao ser recebidos pela cadmera de infravermelho

constituindo um corpo tunico, erro que de fato ocorre quando eles apresentam pontos
préximos e com profundidades semelhantes (BO), 2011)).

16

3 Levantamento das Alternativas

Nesse capitulo serdo descritas as alternativas tecnoldgicas (tipos de pacotes de
desenvolvimento) e estratégicas (tipos de andlise de posicionamento) levantadas durante a
fase inicial de projeto e em relacao as quais a biblioteca e aplicativos desenvolvidos nesse

trabalho sao embasados.

3.1 SDK (Software Development Kit)

A primeira decisao foi em relagdo ao tipo de SDK que seria utilizado. Na Tabela
sao apresentados os tipos considerados e alguns critérios utilizados na escolha da solucao
final.

Tabela 1 — Comparagao entre os SDKs considerados para o projeto (OPENKINECT) 2014)
(MICROSOFT] 2015b)) (OPENNI, [2015])

Caracterisicas Software Development Kit (SDK)
Kinect for Win-
dows V1.8 e OpenKinect OpenNI
V2.0
. : Inativa (V1) e .
Comunidade Ativa Ativa (V2) Ativa
Fonte Oficial Nao oficial Nao oficial
]n'tegmg ao com o Total Total Parcial
Kinect
Codigo aberto Nao Sim Sim
Rastreamento de Sim Nio Sim
esqueleto
) Ampla mas
. Ampla e organi- .
Documentagdo Escassa pouco organi-
zada ada

A escolha pelas Microsoft Kinect SDK V1.8 e V2.0 foi feita baseada nao s6 no
fato de que essas sdo as alternativas mais populares entre os desenvolvedores que utilizam
o Kinect mas também pois, sendo produtos desenvolvidos e distribuidos pela prépria
Microsoft, essa é a solu¢do que apresenta o maior nimero de manuais e outras publicagoes
de cunho didatico — focadas na descri¢ao do seu funcionamento, solu¢ao de problemas

tipicos e sugestoes de aplicagdao das fungoes disponiveis pela ferramenta.

Capitulo 3. Levantamento das Alternativas 17

A opcgao OpenKinect apresenta um nivel baixo demais de tratamento de dados
para os objetivos deste trabalho, nao apresentando a funcionalidade de rastreamento de
esqueleto (OPENKINECT, [2014)), fundamental para o que se deseja.

3.2 Tipos de dados de posicao

A segunda decisao tomada diz respeito aos tipos de dados que seriam utilizados
no processo de comparacao de poses e movimentos. As alternativas de solucao e alguns

critérios de selegdo considerados estao descritos na Tabela [2]

Tabela 2 — Comparacao entre os tipos de dados de posicao para o projeto

Caracterisicas Tipos de dados (coordenadas)

Coordenadas carte-

A‘ .
ngulos das junias stanas das juntas

Obtencao Indireta Direta
Invariancia a biotipo Sim Nao

7 .. s

m;af’zancm 4 posicdo Sim Nio
relativa ao sensor

Quantidade de varid- Menor ou igual a 45 60

ves

A solucgao escolhida foi a representacao da posicdo das juntas que compdem o
esqueleto captado pelo sensor pelos seus angulos caracteristicos. Essa solu¢ao, comumente
utilizada em projetos de modelagem biomecénica do corpo humano (BOGERT) 2013), nao
s6 diminui a quantidade de informacao necesséaria para a realizagdo da comparagao, como
também elimina problemas associados a diferencas fisiolégicas entre o modelo que gerou a
referéncia armazenada pelo sistema e o usuario final, cuja imagem ¢ captada e avaliada

em relacao a essa referéncia.

18

4 Projeto

4.1 Requisitos de projeto

Diagramas UML foram utilizados para mostrar, de maneira clara, as fungoes que o
sistema projetado deverd ser capaz de realizar (requisitos funcionais) bem como o modo

como as mesmas serao realizadas.

Alguns requisitos de projeto importantes, no que diz respeito ao modo como o
sistema deve ser capaz de garantir a sua flexibilidade a diferentes tipos de comparagoes e

critérios de selecao, sao:

— A biblioteca deve suportar o uso dos dois modelos do sensor Kinect atualmente

disponiveis no mercado (i.e. Kinect V1 e Kinect V2).

— As fungoes de comparacao utilizadas devem ser projetadas de modo a possibilitar
a avaliagao de esqueletos com N juntas, onde N nao é necessariamente igual ao
numero de juntas definidas nas classes Skeleton dos Kinect SDKs v1.8 (Kinect V1)
ou 2.0 (Kinect V2). Ou seja, o algoritmo deve ser capaz de avaliar, de uma forma
genérica, dois conjuntos de pontos, sem considerar as restrigdes impostas por um

modelo de esqueleto especifico.

— A biblioteca deve suportar a utilizacdo de pardmetros genéricos de avalia¢ao associa-
dos as poses comparadas, de modo a nao limitar os possiveis algoritmos de avaliacao
suportados pelo sistema. Ou seja, uma pose deve ser definida como um conjunto de
parametros genéricos (coordenadas cartesianas ou angulos caracteristicos das juntas
que compdem a pose analisada, por exemplo) e as possiveis comparagoes realizadas

devem, entao, ser adaptadas ao conjunto de parametros genéricos utilizado.

4.2 Diagrama de Casos de Uso

A seguir, encontram-se os diagramas UML que especificam o projeto da biblioteca.
Para elaboragao do diagrama de casos de uso, considerou-se uma aplicagdo possivel para a
biblioteca (reabilitagdo fisioterapica), entao evidenciaram-se os casos de uso que dizem
respeito a biblioteca de fato. Os casos de uso que nao estdo no sistema Biblioteca de

funcoes de avaliacao de movimento nao serao contemplados neste projeto.

Capitulo 4. Projeto 19

| c<includas> Biblioteca de funcdes de avaliacdo de movimentt
|
Realizar icio de pose)- — — - — — — — — _ s<include>> - Comparar posicdo a uma referéneia }- — — 4

l 1
| =<include>> I <<include>>
I l

zarexerciclode™, __ _ _ _ __ _ _ <sincudex>| . Comparar movimento a uma

) mavimento referéncia
Paciente

<<include=>

I
1
.
(-
| =<include>>
|

<<include>>
Criar exerciciodepose y —— - -~~~ - - --~------------------¢Z Registrar pose F< -~ —- -~~~ ~ -

Fisioterapeuta

I
| <<include>>
I

Figura 5 — Diagrama de casos de uso

— Comparar Posigao a uma Referéncia (CDU1): uma pose de entrada (a ser comparada)

é avaliada em relacdo a uma pose de referéncia.

— Comparar Movimento a uma Referéncia (CDU2): as poses de um determinado

movimento sao comparadas a um conjunto de poses de referéncia.

— Definir Pardmetros de Comparagao (CDU3): os parametros que serdao utilizados nas
comparagoes de poses e movimentos (conjunto de poses) sao definidos de acordo

com dados fornecidos pelo usudrio (inputs) e as caracteristicas das poses analisadas.

4.3 Diagramas de Atividade

4.3.1 Comparar Posicdo a uma Referéncia (CDUO1)

LER DADOS REFERENTES DEFINIR PARAMETROS]
. = 5 - CRIAR POSES A SEREM
AS POSES A SEREM DE COMPARACAO (COMPARADAS

COMPARADAS (INCLUDE)

CE GERAR E ENVIAR HEB‘-!.LTM COMPARAR POSES SEGUNDO O CRITERIO
DA COMPARACAO

DE AVALIGAO IMPLEMENTADO

Figura 6 — Diagrama de atividades de Comparar Posi¢do a uma Referéncia

Esse diagrama mostra as relagoes entre as atividades que compoem o caso de uso

Comparar Posicao a uma Referéncia. O objetivo desse caso de uso é a anélise dos erros

Capitulo 4. Projeto 20

de posicionamento entre uma pose (conjunto de pardmetros genéricos representativos de
um Skeleton) de entrada (a ser comparada) e uma pose de referéncia, de acordo com
um determinado critério de avaliacao. Informagoes sobre o conjunto de parametros de

comparacao e o critério de avaliacao utilizados podem ser vistas com mais detalhes nas
se¢oes [4.5] e [4.6.1], respectivamente.

4.3.2 Comparar Movimento a uma Referéncia (CDU02)

[cm MOVIMENTOS A SEREM \J& COMPARAGAD EM ANDAMENTO r” ~
@ | cowPaARADOS APARTIRDAS ~.| compARAR POSICAO
POSES CRIADAS) A UMA REFERENCIA
L (INCLUDE)
FIM DA COMPARACAD
@< r’am E ENVIAR RESULTADOS [AT!.IALIZAR RESULTADOS
DA COMPARAGAO DA COMPARAGAO

Figura 7 — Diagrama de atividades de Comparar Movimento a uma Referéncia

Esse diagrama mostra as relagoes entre as atividades que compdem o caso de
uso Comparar Movimento a uma Referéncia. O objetivo desse caso de uso é a andlise
dos erros de posicionamento entre um movimento (conjunto de poses) de entrada (a ser
comparado) e um movimento de referéncia, de acordo com um determinado critério de
avaliagao. Informacoes sobre o critério de avaliagao utilizado podem ser vistas com mais

detalhes na segao [4.6.2]

4.3.3 Definir Parametros de Comparacido (CDU03)

ANALISAR CARACTERISTICAS REALIZAR AS OPERAGOES NECESSARIAS
@ | pasuuntaspaposeasEr PARA OBTER O NOVO CONJUNTO DE
COMPARADA PARAMETROS DE COMPARAGAQO

(ASSOCIAR 0S VALORES
@< OBTIDOS A POSE A SER
COMPARADA

Figura 8 — Diagrama de atividades de Definir Parametros de Comparacao

Esse diagrama mostra as relagoes entre as atividades que compoem o caso de uso

Definir Parametros de Comparagdo. O objetivo desse caso de uso é gerar o conjunto de

Capitulo 4. Projeto 21

parametros de comparacgao que serao associados as poses avaliadas. Informacoes sobre as

caracteristicas desses parametros podem ser vistas com mais detalhes na secao

4.4 Diagrama de Classes

+Euclide anNom (Pose posel, Pose pose2): double
+AngleMidPoint{ Point3D point1, Point3D middlePaint, Point3D peint2) : double
[+Mormal ToPlan(Point3D point1 | Point3D point2, Point3D peint3) : VectordD
A fectorAndPlan(Point3 D pointOutsidePlan, Point3D commonPoint, Point3D pointl, Point3D point2) : double
+Angle BetweenPlanes (Point3D point11, Peint3D point12, Point3D point1 3, Point3D peint21, Peint3D point22, Point3D point23) : double
tical{ Point3D point1, Point3 D point2) : double
+ProjectPointOnto Plan (Point3D peintOutsidePlan, Point3D paint!, Point3D peint2, Point3D pointd) : Point3D

igle InPl. | dVector(Point3D pointOutsidePlan, Point3D Point, Point3D Point, Point3D point3) : double
AngleInPl Projectk Paoint3D ityPoint, Point3D PointOutsidePlan, Point3D commonPoint, Point3D point1, Point3D point2) : double
Pose I Movement
-GenericParameters : Dictionary<string, double> H-|:|mtas : List<Pose>
I

<<yse

____________________},

!
I
l
l
!
I
: <cuse>>
!
I
l
I
.

+5pheres(Pose standard, Pose attempt, double minRadius, double minScore) : double
p , attemnpt, double minRadius, double radiusStep, double minScore, double scoreStep) : double
Pose Pose, Pose Pose, double radius) : bool
+MiddlePose(Pose pose 1, Pose pose2) : Pose
+TransitionRadius(Pose pose 1, Pose pose2, double radius) @ double

Figura 9 — Diagrama de classes

As classes foram construidas tendo-se sempre em mente o objetivo de produzir uma
biblioteca abrangente e genérica, que pudesse avaliar poses e movimentos para diferentes

defini¢oes de bases de coordenadas e métricas.

Pose

— GenericParameters: uma estrutura Dictionary<string, double> de C# que

guarda os nomes e valores que cada coordenada genérica escolhida.
Movement
— Poses: uma sequéncia temporalmente ordenada de Poses.

Evaluation: a classe estatica que contém todos os métodos do cerne da biblioteca

de avaliacgao.

— Spheres (Pose): método de avaliagdo de poses. Recebe duas poses (uma
referéncia e uma tentativa) e as compara com base em dois outros pardmetros:
raio minimo e nota minima. Uma descricao mais detalhada do algoritmo pode

ser encontrada na secao 4.6.1}

Capitulo 4. Projeto 22

— Spheres (Movement): método de avaliagdo de movimentos. Recebe dois mo-
vimentos (um referéncia e um tentativa) e os compara com base em quatro
outros parametros: raio minimo, passo do raio, nota minima e passo da nota.

Uma descrigao mais detalhada do algoritmo pode ser encontrada na secao |4.6.2

— IsInSphere: um método auxiliar, utilizado pelo método Spheres, que verifica se

uma dada pose se encontra na esfera definida por outra pose e um raio;

— MiddlePose: um método auxiliar, utilizado pelo método Spheres, que retorna a

pose média entre duas poses dadas;

— TransitionRadius: um método auxiliar, utilizado pelo método Spheres, que
calcula o raio de uma esfera de transicao entre duas esferas. Mais detalhes

sobre o algoritmo completo podem ser encontrados na secao [4.6.2}

AuxGeometry: uma biblioteca auxiliar para realizacao dos calculos de geometria
analitica necessarios. Antes de se realizarem os cédlculos, ocorre sempre a verificagao

de singularidades geométricas.

— EuclideanNorm: calcula a norma euclideana do vetor definido entre duas poses;

— AngleMidPoint: calcula o dngulo definido entre dois pontos de extremidade e

um intermediario, recebendo como entrada os trés pontos;

— NormalToPlan: calcula o vetor normal a um plano dado, recebendo como

entrada apenas os pontos que definem as entidades;

— AngleBetweenVectorAndPlan: calcula o dngulo entre um vetor e um plano,

recebendo como entrada apenas os pontos que definem as entidades;

— AngleBetweenPlanes: calcula o angulo entre planos, recebendo como entrada

apenas os pontos que definem as entidades;

— AngleBetweenVectorAndVertical: calcula o angulo entre um vetor e a vertical
(suposta como a terceira coordenada), recebendo como entrada apenas os pontos

que definem as entidades;

— ProjectPointOntoPlan: calcula o ponto que representa a projecao ortogonal de
um ponto em um plano, recebendo como entrada apenas os pontos que definem

as entidades;

— AngleInPlanBetweenProjectionAndVector: calcula o angulo entre a projecao
de um vetor num plano e um outro vetor do plano, recebendo como entrada

apenas os pontos que definem as entidades;
— AngleInPlanBetweenProjections: calcula o angulo entre as projecoes de dois
vetores num plano, recebendo como entrada apenas os pontos que definem as

entidades.

Capitulo 4. Projeto 23

4.5 Definicao das Coordenadas

As estruturas de dados que representam um corpo humano rastreado pelo sensor
sao diferentes entre as versoes 1.8 e 2.0 da Microsoft Kinect SDK. Criaram-se, portanto,
duas bibliotecas wrappers auxiliares (ver apéndices e , uma para cada versao de
SDK trabalhada. Essas bibliotecas servem de interface entre a biblioteca de avaliagao de
movimento (apéndice e as diferentes SDK's, além de modularizarem as referéncias
necessarias (evitando miltiplas referéncias a uma mesma SDK em que a unica distingao é

a Versao).

A partir das estruturas de dados recebidas pelas bibliotecas wrappers, podem se
definir conjuntos de coordenadas que sejam representativas para o tipo de movimento
ou pose que se deseja analisar. Foram definidos dois conjuntos, um para cada versao de
SDK, que usam angulos calculados a partir das posi¢oes das juntas, para representar os
angulos das articulagoes do corpo humano. Esse tipo de modelo é utilizado na fisioterapia
(BOGERT] 2013)).

45.1 Angulos para a SDK 1.8

A base de coordenadas é escolhida considerando-se a hipdétese heuristica de que

uma rotagao em torno do eixo vertical nao tenha importancia.

Figura 10 — Representacao grafica da estrutura de dados skeleton, da SDK 1.8

Na Figura os nomes dos pontos como constam na SDK sao:

A: FootRight (E: FootLeft);

B: AnkleRight (F: AnkleLeft);

Capitulo 4. Projeto

24

C: KneeRight (G: KneelLeft);

D: HipRight (H: HipLeft);

I: HandRight (M: HandLeft);

J: WristRight (N: WristLeft);

K: ElbowRight (O: ElbowLeft);

L: ShoulderRight (P: ShoulderLeft);
Q: HipCenter;

R: Spine;

S: ShoulderCenter;

T: Head;

Definicao das coordenadas, usando os pontos indicados na Figura [10}

— Joelhos:
0;p=/BCD, 05 =/FGH
— Cotovelos:
0op = /JKL, Ocp = /NOP
— Maos:
Oriip = ZIJK, Oyrp = ZMNO
Orrop = Z(I_J), plano(J, K, L)), Oyop = z(z\ﬁv, plano(N, O, P))
— Pés:
Opip = LABC, Oy = LEFG
Opop = L(%@, plano(B,C, D)), Opsg = L(E?, plano(F,G, H))
— Pernas:

Oprip = 4(@, plano(D, H,Q)), Opp = Z(C?[), plano(D, H,Q))

Oprop = 4(pr0ijano(D,H,Q)@> lﬁ), Oprop = l(pTijlano(D,H,Q)Cﬁa fTC)?)

— Bracos:

Opip = LKLS, Opip = LOPS
Opap = é(ﬁ, plano(L, P,S)), Opap = A(ﬁ, plano(L, P, S))
Opsp = Z(TK, plano(K, L, S)), Opss = Z(NO, plano(O, P, S))

Capitulo 4. Projeto 25

— Torso:

Or1 = ZQRS

Ors = Z(plano(D, H,Q)), plano(L, P, R))
9T3 - l(projplano(D,H,Q)Cﬁ7 projplano(D,H,Q)ﬁ)
— Cabeca:
Ocn = l(projplano(L,P,S)ﬁv ﬁ)

Ocye = LRST

— Inclinagao:

Ocve = 4(ﬁ7 q)

452 Angulos para a SDK 2.0

Novamente, a base de coordenadas é escolhida considerando-se a hipdtese heuristica

de que uma rotacao em torno do eixo vertical nao tenha importancia.

Figura 11 — Representacao gréafica da estrutura de dados skeleton, da SDK 2.0

Na Figura os nomes dos pontos como constam na SDK sao:

A: FootRight (E: FootLeft);
B: AnkleRight (F: AnkleLeft);
C: KneeRight (G: KneeLeft);

D: HipRight (H: HipLeft);

Capitulo 4. Projeto

26

I: HandRight (M: HandLeft);

I’: HandTipRight (M’: HandTipLeft);
I”: ThumbRight (M”: ThumbLeft);
J: WristRight (N: WristLeft);

K: ElbowRight (O: ElbowLeft);

L: ShoulderRight (P: ShoulderLeft);
Q: SpineBase;

R: SpineMid;

S: SpineShoulder;

T’: Neck;

T: Head;

Definicao das coordenadas, usando os pontos indicados na Figura [11}

— Joelhos:
0,0 = /BCD, 0,5 = /FGH
— Cotovelos:
bop = LIKL, 0pp = ZNOP
— Maos:
QMID = AIJK, 0M1E =/MNO
Oriop = Z(TJ, plano(J, K, L)), Oras = Z(MN, plano(N, O, P))
— Pés:
Op1p = LABC, Oyng = LEFG
Opap = 4(1@, plano(B,C, D)), Opap = é(ﬁ, plano(F,G, H))
— Pernas:

Opip = 4(@, plano(D, H,Q)), Op1p = L(CT[?, plano(D, H,Q))

Oprop = 4(Pr0ijano(D,H,Q)@7 lﬁ), Oprop = 4(pT0jplano(D,H,Q)C?[7 @)

Capitulo 4. Projeto 27

— Bragos:
Opip = LKLS, g1 = Z0OPS
Opap = é(ﬁ, plano(L, P,S)), Opop = L(P—g, plano(L, P, S))
Opsp = Z(TK, plano(K, L,S)), Opss = Z(NO, plano(O, P, S))
— Torso:
Or1 = ZQRS
Ors = é(plano(D, H, Q)), plano(L, P, R))
0T3 = é(prajplano(D,H,Q)Cﬁ7 projplano(D,H,Q)ﬁ)
— Pescoco:
0p. = LRST'
— Cabeca:
erl = é(pTijlano(L,P,S)ﬁa ﬁ)
Ocve = LT'ST
— Inclinagao:

001)2 = 4<R?7 g)

4.6 Algoritmos de comparacao

Definem-se alguns termos que representam as entidades utilizadas no algoritmo:

e Pose: um conjunto de coordenadas genéricas (seus nomes e seus valores) que define
uma posi¢ao de um corpo humano (ou parte dele) para um instante de tempo. Pode

ser representado como um vetor p.

e Movimento: um conjunto de poses de mesmas coordenadas genéricas, de um mesmo

corpo humano (ou parte dele), referentes a instantes de tempo sequenciais: M = {p;}

e Referéncia: um objeto (pose ou movimento) considerado como padrao (base de

uma comparagao).

e Tentativa: um objeto (pose ou movimento) que tenta aproximar uma referéncia.

Foram implementados um algoritmo para comparagao de movimentos e um para
comparagao de poses, ambos nomeados spheres, aproveitando-se da sobrecarga de métodos
possivel em C#. Observe-se que as implementacoes sao agnosticas a escolha da base de
coordenadas (e nao somente aplicdvel aquelas definidas na secao , produzindo assim

algoritmos genéricos que podem ser reutilizados para outras convengoes ou modelos.

Capitulo 4. Projeto 28

46.1 Poses

O método spheres para poses recebe como parametros duas poses: uma referéncia
e uma tentativa, e dois valores de ponto flutuante: o raio minimo e a nota minima. Como

resposta, ele retorna um valor de ponto flutuante representando a avaliacao.

Funcionamento: usa-se a norma euclideana. Caso a distancia entre a tentativa
e a referéncia seja inferior ao raio minimo (ou seja, se a tentativa estd contida na esfera
minima cujo centro ¢é a referéncia), o método retorna o valor 1, indicando sucesso total.
Se nao, avalia-se a razao entre o raio minimo e a distancia entre poses; se inferior a nota
minima, o método retorna -1 (indicando falha); se for superior a nota minima, o método

retorna o valor dessa razao como nota da avaliacao.

4.6.2 Movimentos

Movimentos podem ser construidos a partir de uma lista de poses ou lidos de um
arquivo .tzt que respeitem o seguinte padrao: cada parametro deve estar numa linha

diferente, com seus valores temporalmente sequenciais separados por espacos em branco.

O método spheres para movimentos recebe como parametros dois movimentos: um
referéncia e um tentativa, e quatro valores de ponto flutuante: o raio minimo, o passo do
raio, a nota minima e o passo da nota. Como resposta, ele retorna um valor de ponto

flutuante representando a avaliacao.

Funcionamento: sdo definidas regides de avaliagdo (Z,); em torno de cada pose
p; para cada nivel de precisao ¢ estabelecido de maneira discreta, com passo da nota step,
da seguinte maneira:

(Zy)i AP | lIP—Dil| < s}, sendo 1y = rpin + J * Step,, em que 7y, € 0 raio minimo,

J € o inteiro correspondente ao ntimero do passo e step, ¢ o passo do raio.

Sao também definidas as regioes de transicao (7}); 11 entre duas poses consecutivas:

(Tp)isiv1 : {P | IP=Pell < Ry}, com Py, = 3#(Pi+pig1) e Ry = \/71% + (5 * 151 — B2
A Figura [12] mostra a ideia analoga para duas dimensoes, para um dado ¢, com

as circunferéncias de linha cheia representando (Z,)o € (Z4)1, € a circunferéncia de linha

pontilhada representando (7)o 1. Ha também a representacao grafica de Ry e ry.
Avalia-se, entdo, um movimento através do algoritmo ilustrado na figura [I3

Sendo ¢; a precisao de cada se¢ao do movimento e n o nimero de poses contidas

no movimento referéncia, a nota final (o velor de retorno do método) vale:

1 n—1
ta=——3S ¢
nota n—lggb

Em caso de alguma falha, o método retorna imediatamente com valor -1.

Capitulo 4. Projeto

29

Figura 12 — Representacao grafica bidimensional das regioes de avaliacao e de transicao

Entradas: Ref

INICIO

e,

! nota—nota+g, |

: [p<_1, :
flag—false

[i+1=n-1]?

i nota<nota/(n-1), |
¢ resul—sucesso

. nota—notal(n-1),
resul—falha ;

Y

Saidas: nota,
resul

Figura 13 — As flechas verdes sao para valores verdadeiros das condigoes testadas e as
vermelhas, para falsos. Os tragos azuis indicam leitura da proxima pose do

movimento tentativa

Capitulo 4. Projeto 30

4.7 Aplicativo

No decorrer do trabalho um aplicativo para o Kinect V1 foi desenvolvido a fim de
demonstrar as funcionalidades da biblioteca projetada e o potencial da mesma como uma
importante ferramenta no desenvolvimento de aplicativos que se valham da comparacao

de poses e movimentos aqui proposta.

O software foi desenvolvido no Visual Studio Community 2015, em C# e utilizando

o framework .NET 4.6 oferecido pela Microsoft.

O cédigo fonte do aplicativo em sua versao final pode ser visto no Apéndice [C|

4.7.1 Interface Grafica e Comandos

Nessa secao serao descritos todos os elementos que compoem a interface grafica do

software desenvolvido, detalhando as suas fungbes e interdependéncias dentro do codigo.

Durante a descri¢ado que sera realizada, poses ou movimentos de referéncia, ou seja,
poses ou movimentos que seriam registrados previamente a utilizacao do aplicativo pelo
usudrio final do mesmo (registrados por fisioterapeutas para a utilizagdo do software na

area de reabilitagao, por exemplo), serdo referenciados como elementos de referéncia.

Do mesmo modo, poses ou movimentos realizados pelo usuario final do software
(um paciente, continuando o exemplo da utilizacdo do aplicativo na area de reabilitagao)

serdao referenciados como elementos do usudrio.

KINECT 3 ® Capture Mode Comparing Mode 4
5 @ photo © video §

17 19 20 18 17 19 20 18
[seated Mode 7 14 13 16 15 21 24 22 23
[] Model 8 12 Take Phots 9 11 10 |o 25

Figura 14 — Interface grafica do software desenvolvido.

1. Tela esquerda: Nessa tela sdo plotados poses e movimentos de referéncia quando

Capitulo 4. Projeto 31

10.

o aplicativo se encontra em modo de comparagao (vide itens (3| e . Em modo de
captura, essa tela plota continuamente os movimentos capturados em tempo real

pelo sensor (feedback visual).

Tela Direita: Nessa tela sao plotados poses e movimentos do usuario quando o
aplicativo se encontra em modo de comparacao (vide itens [3| e . Em modo de
captura, essa tela plota o movimento que sera salvo pelo sistema quando o botao
REC (item [10]) é pressionado, ou mostra a pose que sera salva pelo sistema quando
o botao Take Photo (item E[) é pressionado, dependendo do que o usuario deseja

capturar - movimento ou pose (itens [f] e [respectivamente).

Capture Mode: Quando o aplicativo se encontra nesse modo de operacgao, botoes e
demais elementos graficos que permitem que o usuério realize fungoes de captura de

imagens (poses) ou videos (movimentos) sao acionados (i.e. podem ser pressionados).

Comparing Mode: Quando o aplicativo se encontra nesse modo de operagao, botoes e
demais elementos graficos que permitem que o usuario realize fungoes de comparagao

de imagens (poses) ou videos (movimentos) sao acionados.

Photo: Quando o aplicativo se encontra nesse modo de operacao, botoes e demais ele-
mentos graficos que permitem que o usuario realize fungoes de captura ou comparagao

de imagens (poses) sao acionados.

Video: Quando o aplicativo se encontra nesse modo de operacao, botdes e demais ele-
mentos graficos que permitem que o usuario realize fungoes de captura ou comparacao

de videos (movimentos) sao acionados.

Seated Mode: Quando essa caixa de selecdo é marcada, juntas que compoem a parte
inferior do esqueleto captado (quadril, joelhos, tornozelos e pés) sao ignoradas na

construcao da figura do esqueleto que sera plotado na tela.

Model: Quando essa caixa de selecao é marcada, qualquer pose ou movimento salvos
durante a utilizagdo do software (vide item [12]) serao marcados pelo sistema como

sendo poses ou movimentos de referéncia.

Take Photo: No instante em que esse botao é pressionado, a imagem (pose) mostrada
na Tela Esquerda (item [lf) é guardada em uma varidvel global no cédigo (meméria
volatil).

REC: No instante em que esse botao é pressionado, as imagens (poses) que compoem
o movimento capturado pelo sensor comegam a ser armazenadas pelo software (nova-
mente utilizando varidveis globais, ou seja, a memoria ainda é volétil). Pressionando

o botdo uma segunda vez finaliza o processo de captura do video (movimento).

Capitulo 4. Projeto 32

11.

12.

13.

14.

15.

16.

17.

18.

19.

Starting Photo: Ap6s o botao REC (item [10]) ser pressionado pela segunda vez, é
possivel selecionar uma nova pose inicial para o movimento capturado utilizando os

botoes de Shift (itens|17]e associados a Tela Direita. Ao pressionar esse botao, a

pose mostrada na Tela Direita sera a nova pose inicial do movimento capturado.

Save: Ao pressionar esse botao, poses e movimentos previamente armazenados em
varidveis globais (meméria volatil) dentro do codigo (vide itens[d|e[L0) sdo exportados

na forma de arquivos de texto (memoria nao-volatil).

Load Photo: Ao pressionar esse botao, uma pose serd carregada na Tela Direita

(item [2).

Load Model Photo: Ao pressionar esse botao, uma pose serd carregada na Tela
Esquerda (item [1)).

Load Video: Ao pressionar esse botao, um movimento sera carregada na Tela Direita
(item . Inicialmente a tela mostrard apenas uma pose (pose inicial do movimento),

porém botdes para a manipulagdo do movimento carregado estarao ativos (vide itens

(L7 (18 [19} [201 21} 2 e 23).

Load Model Video: Ao pressionar esse botao, um movimento serd carregada na Tela
Esquerda (item . Inicialmente a tela mostrarda apenas uma pose (pose inicial do

movimento), porém botdes para a manipulacdo do movimento carregado estarao

ativos (vide itens [17] [18] [19] 20} 21} 2] e [23).

Shift (L): Ao pressionar esse botao, a pose imediatamente anterior a atualmente
plotada na tela alvo (esquerda ou direita), e que compdem o movimento carregado
pelo sistema (vide itens [15] e , é exibida. O botao mais a esquerda estd associado
a Tela Esquerda (item , enquanto que o botao mais a direita esta associado a Tela
Direita (item [2)).

Shift (R): Ao pressionar esse botao, a pose imediatamente posterior & atualmente
plotada na tela alvo (esquerda ou direita), e que compdem o movimento carregado
pelo sistema (vide itens [15] e , é exibida. O botao mais a esquerda esta associado

a Tela Esquerda (item , enquanto que o botao mais a direita esta associado a Tela

Direita .

Start Loop: Ao pressionar esse botao, as poses que compdem o movimento carregado
pelo sistema (vide itens [15] e sao plotadas na tela alvo (esquerda ou direita)
de maneira sequencial crescente e ciclica (i.e. em loop). O botao mais a esquerda
estd associado a Tela Esquerda (item , enquanto que o botao mais a direita esta
associado & Tela Direita (item [2)).

Capitulo 4. Projeto 33

20.

21.

22.

23.

24.

25.

Stop Loop: Ao pressionar esse botao, o plot sequencial crescente e ciclico das poses
que compoem o movimento carregado ¢ interrompido na tela alvo. O botao mais
a esquerda estd associado a Tela Esquerda (item , enquanto que o botao mais a
direita estd associado & Tela Direita (item [2)).

Sync: Ao pressionar esse botao, os movimentos plotados em ambas as telas voltam a
sua posicao inicial (primeira pose do movimento), sincronizando o indice das poses

atualmente plotadas.

Loop + : Ao pressionar esse botao, o intervalo de tempo entre o plot em loop de duas
poses consecutivas, em ambos os movimentos, é decrementado. Ou seja, a velocidade
com que as imagens sdo exibidas em sequéncia aumenta (velocidade do movimento

plotado aumenta).

Loop - : Ao pressionar esse botao, o intervalo de tempo entre o plot em loop de duas
poses consecutivas, em ambos os movimentos, é incrementado. Ou seja, a velocidade
com que as imagens sao exibidas em sequéncia diminui (velocidade do movimento

plotado diminui).

Compare: Ao pressionar esse botao, é realizada a comparagao entre as poses ou

movimentos de interesse, previamente carregados e exibidos em ambas as telas (1] e

2).

Textboz: Caixa de texto onde o resultado da comparagao (vide item é exibido.

34

5 Testes e Resultados

Para realizar os testes de todo o cédigo desenvolvido, foram desenvolvidos trés
pequenos programas auxiliares em Python, para que fosse possivel avaliar diferentes etapas

do fluxo da biblioteca de maneira modular.

Um deles, testgenerator.py (ver apéndice [B.1)) gerou sinais senoidais e imitagoes

com ruido branco para o teste do algoritmo Spheres. Os resultados podem ser vistos nas

figuras [15] [16] e [I7]

t movementAttemptDotTwo I nent(pathAttemptDotTwo);
nent(pathAttemptDotOFive);

luation.Spheres(movementStandard, movementAttemptDotOne, 1.5, @.

.WriteLine(nota);
(° B | file:///C:/Usersfrenanr/documents/visual studio 2015/Projects/Kine.. — =)

Figura 15 — Sucesso (excetuando-se a ultima esfera) na avaliacao de dois movimentos, o
segundo gerado a partir do primeiro com adig¢ao de ruido branco de desvio-
padrao 0,1.

\ \AOCUMENTS \ \\
movementStandard = ent(pathStandard);

t movementAttemptDotOne = M ment(pathAttemptDotOne);
t movementAttemptDotTwo = nent (pathAttemptDotTwo);

t movementAttemptDotOFive t(pathAttemptDotOFive);

Evaluation.Spheres(movementStandard, movementAttemptDotTwo, 1.5, ©.15, .1, ©.4);
le.WriteLine(nota);

u | file:///C:/Users/renanr/documents/visual studio 2015/Projects/Kine.. = =)
.Read(); -

Figura 16 — Falha na avaliacao de dois movimentos, mantendo-se os parametros mas com
o segundo movimento gerado a partir do primeiro com adicao de ruido branco
de desvio-padrao 0,2.

Capitulo 5. Testes e Resultados 35

ment movementAttemptDotOne ement(pathAttemptDotOne);
t movementAttemptDotTwo (pathAttemptDotTwo);
ment movementAttemptDotOFive ement (pathAttemptDotOFive) ;

nota = Evaluation.Spheres(movementStandard, movementAttemptDotTwo,
WritelLine(nota);

B | file:///C:/Users/renanr/documents/visual studio 2015/Projects/Kine.. — =

- e |

Figura 17 — Sucesso (excetuando-se a ultima esfera) na avaliacdo de dois movimentos, o
segundo gerado a partir do primeiro com adicao de ruido branco de desvio-
padrao 0,2, mas com um passo de raio maior e outros parametros mantidos.

Os outros dois, jointsPlotter.py (apéndice e genParmsPlotter.py (apéndice
receberam arquivos .tzt contendo, no primeiro caso, as coordenadas cartesianas das
juntas lidas diretamente pelo Kinect V2 e, no segundo caso, os valores dos parametros
genéricos (angulos das articulagoes) para dois movimentos realizados: um considerado

"padrao’e o outro sendo uma tentativa de imitar o primeiro (realizados pela mesma pessoa).

O jointsPlotter.py confirmou que a captura de dados pelo Kinect V2 e sua SDK
funcionaram de maneira satisfatéoria. O movimento realizado para teste é ilustrado pela
figura[18 Os graficos gerados das coordenadas cartesianas das juntas lidas estdo nas figuras
[19, 20, 21 e 221 Observou-se que as regides iniciais e finais apresentam comportamento
instavel, mas isso deve-se ao tempo que a pessoa levou para entrar e sair do campo de
visao do sensor. Exluindo-se esse detalhe, o comportamento dos dados observados reflete

satisfatoriamente o movimento realizado.

Capitulo 5. Testes e Resultados 36

Figura 18 — Dois momentos do movimento realizado para testar a captura de dados pelo
sensor e seu registro na estrutura de dados presente na SDK.

Figura 19 — Coordenadas cartesianas (da esquerda para a direita, X, Y e Z) da junta mdo
direita, com eixos verticais em metros e horizontais em indice da sequéncia.

Capitulo 5. Testes e Resultados 37

0.6 0.6 20

04 0.5 18
0.4 16
03 14
0.2 12
0.1 10

0.0 0.8

Figura 20 — Coordenadas cartesianas (da esquerda para a direita, X, Y e Z) da junta pulso
direito, com eixos verticais em metros e horizontais em indice da sequéncia.

20 40 60 80 100 120 140 160 [20 40 60 80 100 120 140 160) 20 40 60 80 100 120 140 160

Figura 21 — Coordenadas cartesianas (da esquerda para a direita, X, Y e Z) da junta
cotovelo direito, com eixos verticais em metros e horizontais em indice da
sequeéncia.

0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160 o 20 40 60 80 100 120 140 160

Figura 22 — Coordenadas cartesianas (da esquerda para a direita, X, Y e Z) da junta ombro
direito, com eixos verticais em metros e horizontais em indice da sequéncia.

O genParmsPlotter.py confirmou que o calculo dos angulos seguiu o esperado. Para
esse teste, uma pessoa realizou um movimento (numa tentativa de variar apenas um dos
dngulos da base, para simplificar a andlise) que foi tomado como padrao e, em seguida,

tentou repeti-lo. O movimento em questao é ilustrado pela figura [23]

Capitulo 5. Testes e Resultados 38

Os dados iniciais e finais foram desprezados,No movimento realizado, tentou-se
manter a variacao angular do cotovelo constante no tempo, o que foi bem representado
pelos resultados, como pode ser visto na figura 24, Além disso, os valores também sao
condizentes: a figura mostra uma variagao de aproximadamente 70 graus (do instante
inicial ao final), o que corresponde aos valores calculados (varia¢ao de aproximadamente
1,3 radianos). Para validagdo, ilustrou-se também a comparacao dos valores de dngulo

para o cotovelo esquerdo, que ficou parado; de fato, como pode ser visto na figura [25] as

variacoes foram inferiores a 1% da variagao calculada para o cotovelo direito.

Figura 23 — Trés momentos do movimento realizado para testar o calculo de angulos como
parametros genéricos pela biblioteca.

—0.6 . . . L —0.8 I . L .
0 10 20 30 40 50 0 10 20 30 40 50

Figura 24 — Angulo do cotovelo, como definido na secao 4.5.20 A esquerda, valores para o
movimento considerado "padrao"; a direita, para a tentativa de reproducao.
Eixos verticais em radianos e horizontais em indice da sequéncia.

Capitulo 5. Testes e Resultados 39

-0.926

-0.927+ —0.934

-0.928

—0.936
—0.929+

—0.930+
—0.938+

=0.931+

—0.932f -0.940f

—0.933+

-0.934 —-0.942 L ’ v .
0 0

10 20 30 40 50

Figura 25 — Angulo do cotovelo, como definido na secao A esquerda, valores para o
movimento considerado "padrao"; a direita, para a tentativa de reproducao.
Eixos verticais em radianos e horizontais em indice da sequéncia.

40

6 Conclusoes

A biblioteca desenvolvida, como exemplificado pela implementacao das func¢oes de
comparagao de poses e movimentos descritas (vide secao [4.6)), possui grande flexibilidade
em relagdo aos tipos de parametros de comparacao que podem ser associados as poses a

serem avaliadas e utilizados em qualquer método de avaliagao implementado.

No caso das fungoes de avaliacdo aqui projetadas, os parametros de comparacao
das poses a serem avaliadas foram os angulos caracteristicos das juntas dos esqueletos que
representam tais poses, porém, é importante notar, qualquer outro pardmetro (coordenadas
cartesianas das juntas, por exemplo) poderia ser utilizado em conjunto com a fungao de
comparagao implementada (ou qualquer outra fungdo de comparagio), gerando resultados

equivalentes.

Isso acontece devido ao modo como uma pose é definida dentro da biblioteca
(vide secao , possuindo um conjunto de pardmetros genéricos (que podem ser angulos,
coordenadas absolutas, pesos, ou quaisquer outros valores atribuidos pelo usuario da
biblioteca) como o tnico descritivo das caracteristicas dessa pose. Desse modo, uma pose
nao mais é associada a um numero fixo de valores e nem a um tipo fixo associado a esses
valores (60 coordenadas cartesianas, por exemplo, como é definido no construtor de um
Skeleton na Kinect SDK v1.8).

A biblioteca também ¢é flexivel em relagao ao tipo de sensor utilizado, uma vez que
suporta a utilizagdo de ambas as versoes do sensor Kinect (Kinect V1 e Kinect V2), desde

que a SDK utilizada esteja atualizada (v1.8 para o V1 e v2.0 para o V2).

Os projeto foi realizado utilizando um aplicativo desenvolvido exclusivamente para
o Kinect V1, com a SDK v1.8, porém, como a definicdo de uma pose dentro da biblioteca
nao esta necessariamente associada a nenhuma propriedade previamente estabelecida ao
instanciar um objeto Skeleton dentro do aplicativo (como citado nos pardgrafos anteriores),
dados recebidos de aplicativos projetados para qualquer versao do sensor podem ser
processados pelos métodos de avaliacao de uma maneira tinica, garantindo resultados

consistentes e independentes do sensor utilizado.

Por fim, é importante notar que a possibilidade de crescimento da biblioteca
desenvolvida é praticamente ilimitada, uma vez que a implementacao de novos métodos
de avaliacao depende somente da criatividade do desenvolvedor e da sua capacidade em
transcrever expressoes e métodos matematicos dentro da biblioteca. A utilizagdo continua
dessa biblioteca como uma ferramenta de avaliagao de poses e movimentos promoveria
uma evolugao natural da mesma pela comunidade de usuarios, gerando nao s6 um aumento

no nimero de métodos de avaliagdo disponiveis (como discutido), como também uma

Capitulo 6. Conclusées 41

melhoria significativa (e constante) na eficiéncia computacional, robustez e precisao do

sistema como um todo.

42

Referencias

BELFIORE, P. P.; FAVERO, L. P. L. Técnicas estatisticas multivariadas para analise do
comportamento de grupos supermercadistas brasileiros. IX Semindrios em Administracio
FEA-USP, 2006. Nenhuma citacao no texto.

BO, A. e. a. Joint angle estimation in rehabilitation with inertial sensors and its
integration with kinect. Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, p. 3479-3483, 2011. Citado 2 vezes nas péaginas [11] e [15]

BOGERT, A. J. e. a. A real-time system for biomechanical analysis of human movement
and muscle function. PubMed Central, 2013. Citado 2 vezes nas paginas [I7] e 23]

GALNA, B. e. a. Accuracy of the microsoft kinect sensor for measuring movement in
people with parkinson’s disease. Gait and Posture, v. 39, p. 1062-1068, 2014. Citado na

pagina [L1]

HAGEGE, R.; FRANCOS, J. M. Parametric estimation of multi-dimensional affine
transformations: an exact linear solution. IEEFE International Conference on Acoustics,
Speech, and Signal Processing, v. 2, p. ii/861-ii/864, 2005. Nenhuma cita¢ao no texto.

KHOSHELHAM, K. Accuracy analysis of kinect depth data. ISPRS - International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, p.
133-138, 2011. Citado na pagina (14}

MICROSOFT. Kinect for Windows Human Interface Guidelines v1.8.0. 2015. Disponivel
em: <https://msdn.microsoft.com/en-us/library/jj663791.aspx>. Acesso em: 20.5.2015.
Citado 2 vezes nas péaginas [13| e [14]

MICROSOFT. Kinect for Windows SDK. 2015. Disponivel em: <https://msdn.microsoft|
com/enus//library /hh855347.aspx>. Acesso em: 23.5.2015. Citado 2 vezes nas paginas [
e[I6l

MICROSOFT. Programming Kinect for Windows v2 Jump Start. 2015. Dispo-

nivel em: <https://www.microsoftvirtualacademy.com/en-US /training-courses/
programming-kinect-for-windows-v2-jump-start-908871=Ju7xHKf4 6604984382>. Acesso
em: 18.08.2015. Citado 2 vezes nas paginas [13] e [14]

OPENKINECT. FAQ. 2014. Wiki do OpenKinect. Disponivel em: <http:
//openkinect.org/wiki/FAQ>. Acesso em: 23.5.2015. Citado 3 vezes nas pdginas [9]
el7

OPENNI. Reference Guide. 2015. Disponivel em: |<http://openni.ru/reference-guide/
index.html?t=index.html> Acesso em: 25.5.2015. Citado 2 vezes nas paginas [J e [16]

RAKPRAYOON, P. e. a. Kinect-based obstacle detection for manipulator. International
Symposium on System Integration (SII), p. 68-73, 2011. Citado na pagina

TONG, J. e. a. Scanning 3d full human bodies using kinects. IEFE Transactions on
Visualization and Computer Graphics, p. 643-650, 2012. Citado na pagina [14]

https://msdn.microsoft.com/en-us/library/jj663791.aspx
https://msdn.microsoft.com/enus/library/hh855347.aspx
https://msdn.microsoft.com/enus/library/hh855347.aspx
https://www.microsoftvirtualacademy.com/en-US/training-courses/programming-kinect-for-windows-v2-jump-start-9088?l=Ju7xHKf4_6604984382
https://www.microsoftvirtualacademy.com/en-US/training-courses/programming-kinect-for-windows-v2-jump-start-9088?l=Ju7xHKf4_6604984382
http://openkinect.org/wiki/FAQ
http://openkinect.org/wiki/FAQ
http://openni.ru/reference-guide/index.html?t=index.html
http://openni.ru/reference-guide/index.html?t=index.html

Referéncias 43

YU, X. e. a. Children tantrum behaviour analysis based on kinect sensor. Third Chinese
Conference on Intelligent Visual Surveillance (IVS), p. 49-52, 2011. Citado na pégina .

Apéndices

45

APENDICE A - Cédigo Fonte: Algoritmo

de Comparacao Sequencial

Todo o c6digo estd disponivel no repositério github.com /renanr /KinectHumanMovementEvalua

A.1 Wrapper SDK 1.8

using System. Collections. Generic;
using K1 8 = Microsoft . Kinect;
using System.Windows. Media.Media3D;

using System;

namespace KHMESDKI 8
{

public class Skeleton

{

public Dictionary<string , Point3D> Joints;

// Empty Constructor
public Skeleton () { }

// Constructor from a Kinect SDK 1.8 Skeleton
public Skeleton (K1 _8.Skeleton skeleton)
{
this.Joints = new Dictionary<string , Point3D >();
foreach (K1 8.Joint joint in skeleton.Joints)
{

if (joint.TrackingState != Kl_8.JointTrackingState.NotTr:

{

this. Joints.Add(joint .JointType.ToString (), KinV1Joir

Console. WriteLine ("WARNING: joint " + joint.JointType

APENDICE A. Cédigo Fonte: Algoritmo de Comparagio Sequencial 46

/*
Key names for joints are:

"FootRight", "AnkleRight", "KneeRight", "HipRight"
"FootLeft", "AnkleLeft", "KneeLeft", "HipLeft"
"HandRight", "WristRight", "ElbowRight", "ShoulderRight"
"HandLeft", "WristLeft", "ElbowLeft", "ShoulderLeft"
"HipCenter", "Spine", "ShoulderCenter", "Head'

// Method to construct a Point3D from a Kinect V1 Joint
public Point3D KinV1JointToPoint3D (K1_8. Joint joint)
{
Point3D point = new Point3D (joint.Position.X, joint.Position.

return point;

A.2 Wrapper SDK 2.0

using System. Collections . Generic;
using K2 0 = Microsoft . Kinect;
using System.Windows. Media . Media3D;

using System;

namespace KHMESDK2 0
{

public class Skeleton

{

public Dictionary<string , Point3D> Joints;

// Empty Constructor
public Skeleton() { }

// Constructor from a Kinect SDK 2.0 Skeleton

public Skeleton (K2 _0.Body body)

{
this.Joints = new Dictionary<string , Point3D >();
foreach (K2_0.JointType jointType in body. Joints.Keys)

APENDICE A. Cédigo Fonte: Algoritmo de Comparagio Sequencial 47

{
if (body.Joints[jointType]|. TrackingState != K2 0.Tracking
{
this. Joints.Add(jointType.ToString (), KinV2JointToPoi
}
else
{
Console. WriteLine ("WARNING: joint " + jointType.ToSt
}
}

// Method to construct a Point3D from a Kinect V1 Joint
public Point3D KinV2JointToPoint3D (K2 0. Joint joint)
{
Point3D point = new Point3D (joint.Position.X, joint.Position.

return point;

A.3 KinectHumanMovementEvaluation.cs

using System;

using System. Collections . Generic;

using System.Ling;

using System .Windows. Media . Media3D ;

using K1 8 = KHMESDK1 8; // wrapper for Kinect SDK 1.8
/*
Key names for joints are:
"FootRight", "AnkleRight", "KneeRight"', "HipRigl
"FootLeft", "AnkleLeft", "KneeLeft", "HipLeft",
"HandRight", "WristRight", "ElbowRight", "Shoulc
"HandLeft", "WristLeft", "ElbowLeft", "Shoulder]
"HipCenter", "Spine", "ShoulderCenter", "Head"

using K2 0 = KHMESDK2 0; // wrapper for Kinect SDK 2.0
/*

Key names for joints are:

APENDICE A. Cédigo Fonte: Algoritmo de Comparagio Sequencial 48
"FootRight", "AnkleRight", "KneeRight",
"FootLeft", "AnkleLeft", "KneeLeft",

'HandTipRight ", "ThumbRight"

'"HandRight"', "WristRight', "ElbowRight',

"HandTipLeft", "ThumbLeft",
"HandLeft", "WristLeft", "ElbowLeft",

"Shoulder]

"SpineBase", "SpineMid", "SpineShoulder",

namespace KinectHumanMovementEvaluation

{

public class Pose

{

public Dictionary<string , double> GenericParameters { get; set;]

// Empty Constructor
public Pose() { }

// Complete Constructor: shallow copy of GenericParameters

public Pose(Dictionary<string , double> genParam)

{

this.GenericParameters = genParam;

// Constructor from a Kinect SDK 1.8 Skeleton

// the parameters are defined as some representative joint angles

public Pose(K1_8.Skeleton s)
{

this.GenericParameters = new Dictionary<string , double>();

//Knees

if (s.Joints.ContainsKey (" AnkleRight") && s.Joints.ContainsKey

{

string rkn = "rightKneeAngle";

double rkv = AuxGeometry.AngleMidPoint(s. Joints [" AnkleRig

this.GenericParameters.Add(rkn, rkv);

if (s.Joints.ContainsKey (" AnkleLeft") && s.Joints.ContainsKey

"HipRigl
"HipLeft",

APENDICE A. Cédigo Fonte: Algoritmo de Comparagio Sequencial 49

string lkn = "leftKneeAngle";
double lkv = AuxGeometry.AngleMidPoint(s. Joints [" AnkleLe
this.GenericParameters.Add(lkn, lkv);

//Elbows
if (s.Joints.ContainsKey (" WristRight") && s.Joints.ContainsKe
{

string ren = "rightElbowAngle";

double rev = AuxGeometry.AngleMidPoint (s. Joints [" WristRig

this.GenericParameters.Add(ren, rev);

if (s.Joints.ContainsKey ("' WristLeft") && s.Joints.ContainsKey
{

string len = "leftElbowAngle";

double lev = AuxGeometry.AngleMidPoint (s. Joints [" WristLe:

this.GenericParameters.Add(len, lev);

//Hands
if (s.Joints.ContainsKey ("HandRight") && s.Joints.ContainsKey
{
string rhn = "rightHandAngle";
double rhv = AuxGeometry.AngleMidPoint (s. Joints [" HandRig!
this.GenericParameters.Add(rhn, rhv);

if (s.Joints.ContainsKey ("HandLeft") && s.Joints.ContainsKey |

{

string lhn = "leftHandAngle";
double lhv = AuxGeometry.AngleMidPoint(s. Joints [' HandLeft
this.GenericParameters.Add(lhn, lhv);

if (s.Joints.ContainsKey ("HandRight") && s.Joints.ContainsKey

{

string rhin = "rightHandInclination ";

APENDICE A. Cédigo Fonte: Algoritmo de Comparagio Sequencial 50

double rhiv = AuxGeometry.AngleBetweenVectorAndPlan (s. Joi
this.GenericParameters.Add(rhin, rhiv);

if (s.Joints.ContainsKey ("HandLeft") && s.Joints.ContainsKey |
{
string lhin = "leftHandInclination";
double lhiv = AuxGeometry.AngleBetweenVectorAndPlan(s. Joi
this.GenericParameters.Add(lhin , lhiv);

//Feet
if (s.Joints.ContainsKey ('FootRight") && s.Joints.ContainsKey
{
string rfn = "rightFootAngle";
double rfv = AuxGeometry.AngleMidPoint (s. Joints [" FootRig!l
this.GenericParameters.Add(rfn, rfv);

if (s.Joints.ContainsKey (' FootLeft") && s.Joints.ContainsKey |
{
string 1fn = "leftFootAngle";
double 1fv = AuxGeometry.AngleMidPoint (s. Joints [" FootLeft
this.GenericParameters.Add(lfn , 1fv);

if (s.Joints.ContainsKey ("FootRight") && s.Joints.ContainsKey

{

string rfin = "rightFootInclination";
double rfiv = AuxGeometry.AngleBetweenVectorAndPlan(s. Joi

this.GenericParameters.Add(rfin , rfiv);

if (s.Joints.ContainsKey ("FootLeft") && s.Joints.ContainsKey |

{

n

string 1fin = "leftFootInclination';
double 1fiv = AuxGeometry.AngleBetweenVectorAndPlan (s. Joi
this.GenericParameters.Add(1fin , 1fiv);

APENDICE A. Cédigo Fonte: Algoritmo de Comparagio Sequencial 51

//Legs
if (s.Joints.ContainsKey (' KneeRight") && s.Joints.ContainsKey
{

string rlin = "rightLeglnclination";

double rliv = AuxGeometry.AngleBetweenVectorAndPlan(s. Joi

this.GenericParameters.Add(rlin , rliv);

if (s.Joints.ContainsKey (' KneeLeft") && s. Joints.ContainsKey |

{

n

string llin = "leftLeglnclination";
double 1liv = AuxGeometry.AngleBetweenVectorAndPlan(s. Joi
this.GenericParameters.Add(1lin , lliv);

if (s.Joints.ContainsKey ("KneeRight") && s.Joints.ContainsKey
{
string rlpn = "rightLegPendulum ";
double rlpv = AuxGeometry. AngleInPlanBetweenProjectionAnc
this.GenericParameters.Add(rlpn, rlpv);

if (s.Joints.ContainsKey ("KneeLeft") && s.Joints.ContainsKey |

{

string llpn = "leftLegPendulum ";
double llpv = AuxGeometry. AngleInPlanBetweenProjectionAnc
this.GenericParameters.Add(llpn, llpv);

//Arms
if (s.Joints.ContainsKey ("ElbowRight") && s.Joints.ContainsKe

{

string ran = "rightArmAngle";
double rav = AuxGeometry.AngleMidPoint(s. Joints [" ElbowRij

this.GenericParameters.Add(ran, rav);

if (s.Joints.ContainsKey ("ElbowLeft") && s.Joints.ContainsKey

APENDICE A. Cédigo Fonte: Algoritmo de Comparagio Sequencial 52

string lan = "leftArmAngle";
double lav = AuxGeometry.AngleMidPoint (s. Joints [" ElbowLe

this.GenericParameters.Add(lan, lav);

if (s.Joints.ContainsKey ("ElbowRight") && s.Joints.ContainsKe
{

string rain = "rightArmlInclination";

double raiv = AuxGeometry.AngleBetweenVectorAndPlan(s. Joi

this.GenericParameters.Add(rain, raiv);

if (s.Joints.ContainsKey (' ElbowLeft") && s.Joints.ContainsKey
{

string lain = "leftArmInclination";

double laiv = AuxGeometry.AngleBetweenVectorAndPlan (s. Joi

this.GenericParameters.Add(lain, laiv);

if (s.Joints.ContainsKey (" WristRight") && s.Joints.ContainsKe
{

string ratn = "rightArmTwist";

double ratv = AuxGeometry.AngleBetweenVectorAndPlan (s. Joi

this.GenericParameters.Add(ratn, ratv);

if (s.Joints.ContainsKey (" WristLeft") && s.Joints.ContainsKey
{
string latn = "leftArmTwistn";
double latv = AuxGeometry.AngleBetweenVectorAndPlan(s. Joi
this.GenericParameters.Add(latn , latv);

//Torso
if (s.Joints.ContainsKey ("HipCenter") && s.Joints.ContainsKey
{

string tn = "torsoAngle";

double tv = AuxGeometry. AngleMidPoint (s. Joints [" HipCentel

APENDICE A. Cédigo Fonte: Algoritmo de Comparagio Sequencial 53

this.GenericParameters.Add(tn, tv);

if (s.Joints.ContainsKey ("HipRight") && s. Joints.ContainsKey |
{
string ttn = "torsoTwist";
double ttv = AuxGeometry.AngleBetweenPlanes(s. Joints [" Hij
this.GenericParameters.Add(ttn, ttv);

if (s.Joints.ContainsKey ("ShoulderCenter") && s.Joints.Contai
{
string tpn = "torsoPendulum";
double tpv = AuxGeometry. AngleInPlanBetweenProjections (s.
this.GenericParameters.Add(tpn, tpv);

//Head
if (s.Joints.ContainsKey ("'Spine") && s.Joints.ContainsKey ("SI
{
string hn = "headAngle";
double hv = AuxGeometry. AngleMidPoint(s. Joints [" Spine"],
this.GenericParameters.Add(hn, hv);

if (s.Joints.ContainsKey ("Head") && s. Joints.ContainsKey (" Shq
{
string hpn = "headPendulum';
Vector3D vecl = Point3D.Subtract (AuxGeometry. ProjectPoint
Vector3D vec2 = Point3D.Subtract(s. Joints ["' Spine"], s. Joi
double hpv = Vector3D . AngleBetween (vecl , vec2);
this.GenericParameters.Add(hpn, hpv);

//Vertical inclination
if (s.Joints.ContainsKey ("Spine") && s. Joints.ContainsKey (" Sl

{

string vn = "verticallnclination";

double vv = AuxGeometry. AngleBetweenVectorAndVertical(s..

APENDICE A. Cédigo Fonte: Algoritmo de Comparagio Sequencial 54

this.GenericParameters.Add(vn, vv);

// Constructor from a Kinect SDK 2.0 Skeleton ,
// the parameters are defined as some representative joint angles
public Pose(K2 0. Skeleton s)

{

this.GenericParameters = new Dictionary<string , double >();

//Knees
if (s.Joints.ContainsKey (" AnkleRight") && s.Joints.ContainsKe
{
string rkn = "rightKneeAngle";
double rkv = AuxGeometry.AngleMidPoint (s. Joints [" AnkleRig
this.GenericParameters.Add(rkn, rkv);

if (s.Joints.ContainsKey (" AnkleLeft") && s.Joints.ContainsKey
{
string lkn = "leftKneeAngle";
double lkv = AuxGeometry.AngleMidPoint(s. Joints [" AnkleLe
this.GenericParameters.Add(lkn, lkv);

//Elbows
if (s.Joints.ContainsKey (" WristRight") && s.Joints.ContainsKe
{

string ren = "rightElbowAngle";

double rev = AuxGeometry.AngleMidPoint (s. Joints [" WristRig

this.GenericParameters.Add(ren, rev);

if (s.Joints.ContainsKey (" WristLeft") && s.Joints.ContainsKey

{

string len = "leftElbowAngle";
double lev = AuxGeometry.AngleMidPoint(s. Joints [' WristLe

this.GenericParameters.Add(len, lev);

APENDICE A. Cédigo Fonte: Algoritmo de Comparagio Sequencial 55

//Hands
if (s.Joints.ContainsKey ("HandRight") && s.Joints.ContainsKey
{
string rhn = "rightHandAngle";
double rhv = AuxGeometry. AngleMidPoint (s. Joints [" HandRig!
this.GenericParameters.Add(rhn, rhv);

if (s.Joints.ContainsKey ("'HandLeft") && s.Joints.ContainsKey |
{
string lhn = "leftHandAngle";
double lhv = AuxGeometry.AngleMidPoint (s. Joints [" HandLeft
this.GenericParameters.Add(lhn, lhv);

if (s.Joints.ContainsKey ("HandRight") && s.Joints.ContainsKey
{
string rhin = "rightHandInclination ";
double rhiv = AuxGeometry.AngleBetweenVectorAndPlan(s. Joi
this.GenericParameters.Add(rhin, rhiv);

if (s.Joints.ContainsKey ("HandLeft") && s. Joints.ContainsKey |
{
string lhin = "leftHandInclination";
double lhiv = AuxGeometry.AngleBetweenVectorAndPlan (s. Joi
this.GenericParameters.Add(lhin , lhiv);

//Feet
if (s.Joints.ContainsKey ('FootRight") && s.Joints.ContainsKey
{
string rfn = "rightFootAngle";
double rfv = AuxGeometry.AngleMidPoint (s. Joints [" FootRigl
this.GenericParameters.Add(rfn, rfv);

if (s.Joints.ContainsKey (' FootLeft") && s.Joints.ContainsKey |

APENDICE A. Cédigo Fonte: Algoritmo de Comparagio Sequencial 56

string 1lfn = "leftFootAngle";
double 1fv = AuxGeometry.AngleMidPoint (s. Joints [" FootLeft
this.GenericParameters.Add(lfn , 1fv);

if (s.Joints.ContainsKey ('FootRight") && s.Joints.ContainsKey

{

string rfin = "rightFootInclination";
double rfiv = AuxGeometry.AngleBetweenVectorAndPlan(s. Joi

this.GenericParameters.Add(rfin , rfiv);

if (s.Joints.ContainsKey ("FootLeft") && s.Joints.ContainsKey |

{

n

string lfin = "leftFootInclination";
double 1fiv = AuxGeometry.AngleBetweenVectorAndPlan(s. Joi
this.GenericParameters.Add(1fin , 1fiv);

//Legs
if (s.Joints.ContainsKey ("KneeRight") && s.Joints.ContainsKey
{

string rlin = "rightLeglnclination";

double rliv = AuxGeometry.AngleBetweenVectorAndPlan(s. Joi

this.GenericParameters.Add(rlin , rliv);

if (s.Joints.ContainsKey ("KneeLeft") && s. Joints.ContainsKey |

{

n

string llin = "leftLeglInclination";
double 1liv = AuxGeometry.AngleBetweenVectorAndPlan(s. Joi
this.GenericParameters.Add(1lin , lliv);

if (s.Joints.ContainsKey (' KneeRight") && s.Joints.ContainsKey

{

string rlpn = '"rightLegPendulum";
double rlpv = AuxGeometry. AngleInPlanBetweenProjectionAnc

APENDICE A. Cédigo Fonte: Algoritmo de Comparagio Sequencial 57

this.GenericParameters.Add(rlpn, rlpv);

if (s.Joints.ContainsKey ("KneeLeft") && s. Joints.ContainsKey |
{
string llpn = "leftLegPendulum ";
double llpv = AuxGeometry. AngleInPlanBetweenProjectionAnc
this.GenericParameters.Add(llpn, llpv);

//Arms
if (s.Joints.ContainsKey ("ElbowRight") && s.Joints.ContainsKe
{

string ran = "rightArmAngle";

double rav = AuxGeometry.AngleMidPoint(s. Joints [" ElbowRij

this.GenericParameters.Add(ran, rav);

if (s.Joints.ContainsKey ("ElbowLeft") && s.Joints.ContainsKey
{

string lan = "leftArmAngle";

double lav = AuxGeometry.AngleMidPoint(s. Joints [" ElbowLe

this.GenericParameters.Add(lan, lav);

if (s.Joints.ContainsKey ("ElbowRight"') && s. Joints.ContainsKe
{

string rain = "rightArmInclination";

double raiv = AuxGeometry.AngleBetweenVectorAndPlan(s. Joi

this.GenericParameters.Add(rain, raiv);

if (s.Joints.ContainsKey ("ElbowLeft") && s.Joints.ContainsKey
{

string lain = "leftArmInclination";

double laiv = AuxGeometry.AngleBetweenVectorAndPlan(s. Joi

this.GenericParameters.Add(lain , laiv);

APENDICE A. Cédigo Fonte: Algoritmo de Comparagio Sequencial 58

if (s.Joints.ContainsKey (" WristRight") && s.Joints.ContainsKe
{

string ratn = "rightArmTwist";

double ratv = AuxGeometry.AngleBetweenVectorAndPlan (s. Joi

this.GenericParameters.Add(ratn, ratv);

if (s.Joints.ContainsKey (" WristLeft") && s.Joints.ContainsKey
{
string latn = "leftArmTwistn";
double latv = AuxGeometry.AngleBetweenVectorAndPlan (s. Joi
this.GenericParameters.Add(latn , latv);

//Torso
if (s.Joints.ContainsKey ("SpineBase") && s.Joints.ContainsKey
{
string tn = "torsoAngle";
double tv = AuxGeometry. AngleMidPoint (s. Joints [" SpineBase
this.GenericParameters.Add(tn, tv);

if (s.Joints.ContainsKey ("HipRight") && s.Joints.ContainsKey (
{
string ttn = "torsoTwist";
double ttv = AuxGeometry.AngleBetweenPlanes(s. Joints [" Hij
this.GenericParameters.Add(ttn, ttv);

if (s.Joints.ContainsKey ("' SpineShoulder") && s. Joints.Contain
{
string tpn = "torsoPendulum";
double tpv = AuxGeometry. AngleInPlanBetweenProjections(s.
this.GenericParameters.Add(tpn, tpv);

//Neck
if (s.Joints.ContainsKey ("SpineMid") && s. Joints.ContainsKey

{

APENDICE A. Cédigo Fonte: Algoritmo de Comparagio Sequencial 59

string nn = "neckAngle";
double nv = AuxGeometry. AngleMidPoint (s. Joints [" SpineMid"

this.GenericParameters.Add(nn, nv);

//Head
if (s.Joints.ContainsKey ("' SpineShoulder") && s. Joints.Contain
{
string hn = "headAngle";
double hv = AuxGeometry. AngleMidPoint (s. Joints [" SpineSho:
this.GenericParameters.Add(hn, hv);

if (s.Joints.ContainsKey ("Head") && s. Joints.ContainsKey (" She
{
string hpn = "headPendulum";
Vector3D vecl = Point3D.Subtract (AuxGeometry. ProjectPoint
Vector3D vec2 = Point3D.Subtract(s. Joints ["' SpineMid"], s.
double hpv = Vector3D.AngleBetween (vecl , vec2);
this.GenericParameters.Add(hpn, hpv);

//Vertical inclination
if (s.Joints.ContainsKey ("SpineMid") && s.Joints.ContainsKey

{

string vn = "verticallnclination";
double vv = AuxGeometry. AngleBetweenVectorAndVertical(s..

this.GenericParameters.Add(vn, vv);

public class Movement

{

public List<Pose> Poses { get; set; }

// Empty Constructor
public Movement () { }

APENDICE A. Cédigo Fonte: Algoritmo de Comparagio Sequencial 60

// Constructor that reads from a .txt file

// Each parameter must be on a different line, its different tem:

public Movement(string path)

{

string [|] lines = System.IO.File.ReadAllLines(path);
double [][] doubleValues = new double|[lines.Count ()][];
int nbOfParams = lines .Count ();

int nbOflnstants = 0;

for (int j = 0; j < nbOfParams; j++)

{

string [] stringValues = lines[j]|.Split (" 7);
nbOfInstants = stringValues.Count() — 1;

doubleValues[j] = new double[nbOflnstants + 1];
for (int 1 = 0; i < nbOfInstants; i++) // discards last

{

doubleValues[j][i] = Convert.ToDouble(stringValues|i]

this.Poses = new List<Pose>();

for (int i = 0; i < nbOfInstants; i++)

{

Pose pose = new Pose();

pose.GenericParameters = new Dictionary<string , double >(

for (int j = 0; j < nbOfParams; j++)

{

string name = "Parameter " + j;

pose. GenericParameters.Add(name, doubleValues[j][i]);

this.Poses.Add(pose);

// Constructor that receives a list of Poses

APENDICE A. Cédigo Fonte: Algoritmo de Comparagio Sequencial 61

public Movement (List<Pose> poses)

{

this.Poses = new List<Pose >();

foreach (Pose pose in poses)

{
this.Poses.Add(pose);

public static class Evaluation

{

/* Spheres Method for two given poses:

Spheres Method for two given poses.
Returns positive or zero float as a score for success or negative

Score represents ratio dist(attempt, standard)/minDist.

public static double Spheres(Pose standard, Pose attempt, double

{

double score = 0;
if (standard.GenericParameters.Count != attempt.GenericParame
score = —1;

Console. WriteLine ("FAILURE: poses do not have same number

foreach (KeyValuePair<string , double> parameter in standard.G
{

if (! attempt.GenericParameters. ContainsKey (parameter.Key

{

score = —1;

Console. WriteLine ("FAILURE: attempt pose does not hax

if (score > —1)

{

APENDICE A. Cédigo Fonte: Algoritmo de Comparagio Sequencial 62

double distance = AuxGeometry.EuclideanNorm (standard , att
if (distance < minRadius)
{
score = 1;
Console . WriteLine ("TOTAL SUCCESS");
}

else

{

score = minRadius / distance;

if (score < minScore)

{

score = —1;
Console. WriteLine ("FAILURE: minimum distance was

return score;

/* Spheres Method for two given movements:
Returns positive or zero float as a score for success or negative
Score represents average of all poses’ scores, each one indicatin

were needed to increase the radius until the sphere contained the

public static double Spheres(Movement standard, Movement attempt ,
{
double finalScore = 0; // final score for complete movement
double r n = minRadius;

int currentPoselndex = 0;

// Reads until ’attempt’ enters the first sphere
for (; currentPoselndex < attempt.Poses.Count &&
IIsInSphere (attempt . Poses [currentPoselndex |, standard.Po
// Checks if ’attempt’ still has poses to be used
if (! (currentPoselndex < attempt.Poses.Count))
{
Console. WriteLine ("FAILURE: Never entered the first sphe

return —1.0;

APENDICE A. Cédigo Fonte: Algoritmo de Comparagio Sequencial 63

// Reads until ’attempt’ leaves first sphere
for (; currentPoselndex < attempt.Poses.Count &&
IsInSphere (attempt . Poses|[currentPoselndex], standard.Pose
// Checks if ’attempt’ still has poses to be used
if (!(currentPoselndex < attempt.Poses.Count))
{
Console. WriteLine ("FAILURE: Never left the first sphere")

return —1.0;

bool isInNextSphere = false;

double score; // score between spheres

Pose midPose; // auxiliary variable

for (int j = 0;
currentPoselndex < attempt.Poses.Count() &&
j < standard.Poses.Count; j++)

score = 1;
midPose = MiddlePose (standard.Poses|[j], standard.Poses]|]j

// Reads until ’attempt’ enters next sphere or minimum ac
for (; currentPoselndex < attempt.Poses.Count &&
IIsInSphere (attempt . Poses [currentPoselndex |, standard.Po
{
// Increases radius of transition sphere until ’atten
for (; !IsInSphere(attempt.Poses|[currentPoselndex], 1

score = score — scoreStep)

// minimum accuracy is not satisfied
if (score <= minScore)
{
Console. WriteLine ("FAILURE: minimum accuracy

return —1.0;

APENDICE A. Cédigo Fonte: Algoritmo de Comparagio Sequencial 64

r n 4= radiusStep;

}

// Checks if ’attempt’ still has poses to be used
if (!(currentPoselndex < attempt.Poses.Count))
{
Console . WriteLine (" Score was " + (finalScore / (stand
" but never entered the " 4+ (j + 1) + " sphere');

return finalScore / (standard.Poses.Count — 1);

// Reads until ’attempt’ leaves next sphere or reaches tl
for (; currentPoselndex < attempt.Poses.Count &&

IsInSphere (attempt . Poses[currentPoselndex |, standard.

// reaches the end of the movement
if (j + 1 = standard.Poses.Count)
{
Console. WriteLine ("SUCCESS") ;
return finalScore / (standard.Poses.Count — 1); /

}

else

{

isInNextSphere = true;

}

// Checks if ’attempt’ still has poses to be used
if (!(currentPoselndex < attempt.Poses.Count))
{
Console. WriteLine (" Score was " + (finalScore / (stand
" but never left the ' + (j + 1) + ' sphere');

return finalScore / (standard.Poses.Count — 1);

if (isInNextSphere)

{
finalScore 4= score;
score = 1;

r_n = minRadius;

APENDICE A. Cédigo Fonte: Algoritmo de Comparagio Sequencial 65

isInNextSphere = false;

Console. WriteLine ("Movement didn’t end?");

return —1.0;

public static bool IsInSphere(Pose attemptPose, Pose standardPose

{

return AuxGeometry. EuclideanNorm (attemptPose, standardPose) <

public static Pose MiddlePose(Pose posel, Pose pose2)

{

bool flag = false;

Pose middlePose = new Pose(new Dictionary<string , double >());

if (posel.GenericParameters.Count != pose2.GenericParameters.

{
flag = true;
Console. WriteLine ("FAILURE: poses do not have same number

foreach (KeyValuePair<string , double> parameter in posel.Gen

{

if (! pose2.GenericParameters.ContainsKey (parameter.Key))

{

flag = true;
Console. WriteLine ("FAILURE: attempt pose does not haxs

if (! flag)

{
double midValue;

foreach (KeyValuePair<string , double> parameter in posel.

{

APENDICE A. Cédigo Fonte: Algoritmo de Comparagio Sequencial 66

midValue = 0.5 % (parameter.Value 4+ pose2.GenericPar:

middlePose. GenericParameters.Add(parameter.Key, midV

return middlePose;

public static double TransitionRadius(Pose posel, Pose pose2, do

{
return Math. Sqrt (Math.Pow(radius, 2) + Math.Pow(0.5% AuxGeome

public static class AuxGeometry

{

public static double EuclideanNorm (Pose posel, Pose pose2)

{

double norm = 0;

if (posel.GenericParameters.Count != pose2.GenericParameters.

{

norm = —1;
Console . WriteLine ("FAILURE: poses do not have same number

foreach (KeyValuePair<string , double> parameter in posel.Gen

{

if (!pose2.GenericParameters.ContainsKey (parameter.Key))

{

norm = —1;
Console. WriteLine ("FAILURE: attempt pose does not hax

}

if (norm > —1)

{

foreach (KeyValuePair<string , double> parameter in posel.

{

norm += Math.Pow ((parameter.Value — pose2.GenericPare

APENDICE A. Cédigo Fonte: Algoritmo de Comparagio Sequencial 67

}

norm = Math. Sqrt (norm);

return norm;

public static double AngleMidPoint (Point3D pointl, Point3D middle

{

Vector3D vecl = Point3D.Subtract (pointl, middlePoint);
Vector3D vec2 = Point3D.Subtract (point2, middlePoint);

// Check for geometric singularities

Vector3D crProd = Vector3D. CrossProduct (vecl, vec2);

double triangleArea = 0.5 % Math.Sqrt (Vector3D.DotProduct (crF
double answer;

if (triangleArea < 0.01)

{
Console. WriteLine ("WARNING: Geometric singularity .");

answer = —1;
¥
else
{
answer = Vector3D . AngleBetween (vec2, vecl);

return answer;

public static Vector3D NormalToPlan(Point3D pointl, Point3D point

{

Vector3D veclOfPlan = Point3D.Subtract (pointl, point3);
Vector3D vec20fPlan = Point3D . Subtract (point2, point3);

// Check for geometric singularities
Vector3D crProd = Vector3D. CrossProduct (veclOfPlan, vec20fPla
double triangleArea = 0.5 % Math.Sqrt (Vector3D.DotProduct (crF

Vector3dD answer ;

APENDICE A. Cédigo Fonte: Algoritmo de Comparagio Sequencial 68

if (triangleArea < 0.01)

{
Console. WriteLine ("WARNING: Geometric singularity .");

answer = new Vector3D ();
else
answer = Vector3D . CrossProduct (veclOfPlan, vec20fPlan);

answer . Normalize ();

return answer;

public static double AngleBetweenVectorAndPlan (Point3D pointOutsi

{

Vector3D vecOutPlan = Point3D . Subtract (pointOutsidePlan , com

Vector3D normal = NormalToPlan(commonPoint, pointl, point2);

// Check for geometric singularities

Vector3D crProd = Vector3D. CrossProduct (Point3D . Subtract (comr
double triangleArea = 0.5 x Math. Sqrt(Vector3D.DotProduct (crF
double vecSize = vecOutPlan. Length;

double answer;

if (triangleArea < 0.01 || vecSize < 0.01)

{
Console. WriteLine ("WARNING: Geometric singularity .");

answer = —1;
}
else
{
answer = Vector3D . AngleBetween (vecOutPlan, normal);
if (answer > 90) answer = 180 — answer;
answer = 90 — answer;

return answer;

APENDICE A. Cédigo Fonte: Algoritmo de Comparagio Sequencial 69

public static double AngleBetweenPlanes(Point3D pointll, Point3D

{

Vector3D normall = NormalToPlan(pointll, pointl2, pointl3);
Vector3D normal2 = NormalToPlan(point21, point22, point23);

return Vector3D.AngleBetween (normall , normal2);

public static double AngleBetweenVectorAndVertical (Point3D pointl

{

Vector3D vector = Point3D.Subtract (pointl, point2);

// Check for geometric singularities
double answer;
if (vector.Length < 0.01)

{
Console. WriteLine ("WARNING: Geometric singularity .");

answer = —1;

else

{

Vector3D vert = Vector3D.Multiply (vector.Length, new Vect

answer = Vector3D.AngleBetween (vector , vert);

return answer;

public static Point3D ProjectPointOntoPlan (Point3D pointOutsidePl

{

// Check for geometric singularities

Vector3D crProd = Vector3D. CrossProduct (Point3D . Subtract (poin
double triangleArea = 0.5 % Math.Sqrt(Vector3D.DotProduct (crF
Point3D answer;

if (triangleArea < 0.01)

{

APENDICE A. Cédigo Fonte: Algoritmo de Comparagio Sequencial 70

Console . WriteLine ("WARNING: Geometric singularity .");

answer = new Point3D ();

else

// Calculates the projected point

Vector3D normal = Vector3D . CrossProduct (Point3D . Subtract (
normal . Normalize ();

double distance = Vector3D.DotProduct(normal, Point3D.Sul
answer = Point3D. Subtract (pointOutsidePlan , Vector3D.Mul

return answer;

public static double AngleInPlanBetweenProjectionAndVector (Point3

{

Point3D projP = ProjectPointOntoPlan (pointOutsidePlan , commo

return AngleMidPoint (projP, commonPoint, referencePoint);

public static double AngleInPlanBetweenProjections(Point3D extren

{

Point3D extrProj = ProjectPointOntoPlan (extremityPoint , comm
Point3D commOutProj = ProjectPointOntoPlan (commonPointOutside
Vector3D vecl = Point3D.Subtract (extrProj, commOutProj);

Vector3D vec2 = Point3D.Subtract (commOutProj, commonPoint);

return Vector3D.AngleBetween (vec2, vecl);

71

APENDICE B — Cédigo Fonte: Algoritmo

para Testes de Precisao

B.1 testgenerator.py

import math
from matplotlib import pyplot as plt

import numpy as np

oneLineS = np.linspace (0,125.6637,160)
defined from 0 to 40%pi, representing 20 repetitions

threeParamsS = np.vstack ((oneLineS ,oneLineS ,oneLineS))
threeParamsS [0 ,] = math.pisnp.cos(threeParamsS|[0,])
threeParamsS [1,] = math.pisnp.sin (threeParamsS|[1 ,])
threeParamsS[2,] = math.pisnp.sin (0.5%xthreeParamsS|[2,])
fileStandard = open ("standardMovement3Params.txt", "w")
fileStandard = open ("standardMovement3Params. txt", "a+")

for row in threeParamsS:
for value in row:
fileStandard . write("%f " % value)
fileStandard . write ("\n")

fileStandard . close ()

oneLineA = np.linspace (0,125.6637,15%x160)
sampled 15 times more often than the Standard

threeParamsA = np.vstack ((oneLineA oneLineA ,oneLineA))
noisel = np.random.normal(0,.05,15%x160)

noise2 = np.random.normal (0,.05,15%x160)

noise3 = np.random.normal (0,.05,15%x160)

APENDICE B. Cédigo Fonte: Algoritmo para Testes de Precisio 72

0 is the mean of the normal distribution

1 is the standard deviation of the normal distribution

threeParamsA [0 ,] = math. pisnp.cos(threeParamsA [0 ,]) + noisel
threeParamsA [1 ,] = math.pisnp.sin (threeParamsA |1 ,]) + noise2
threeParamsA [2,] = math. pixnp.sin (0.5%threeParamsA[2,]) + noise3

fileAttempt = open ("attemptMovement3ParamsDotOFive.txt", "w'")
fileAttempt = open ("attemptMovement3ParamsDotOFive.txt", "a+")

for row in threeParamsA :
for value in row:
fileAttempt . write("%f " % value)
fileAttempt . write ("\n")

fileAttempt . close ()

B.2 jointsPlotter.py

from matplotlib import pyplot as plt

import math

filel = open(’laj.txt’, 'r’)

lines = [line.split() for line in filel |

SpineBase = []
SpineMid = []

Neck = []

Head = []
ShoulderLeft = []
ElbowLeft = []
WristLeft = []
HandLeft = []
ShoulderRight = []
ElbowRight = |
WristRight = |
HandRight = []
HipLeft = []
KneeLeft = []
AnkleLeft = []

APENDICE B. Cédigo Fonte: Algoritmo para Testes de Precisio

FootLeft = []
HipRight = []
KneeRight = []
AnkleRight = []
FootRight = []
SpineShoulder = []
HandTipLeft = []
ThumbLeft = []
HandTipRight = []
ThumbRight = []

for joint in lines:

if joint [0] = ’SpineBase ":
SpineBase .append ([float (joint [1].replace(’,",".")),
float (joint [2].replace(’,7,7.7)),
float (joint [3].replace(’,”, ."))])

if joint [0] == ’SpineMid :
SpineMid . append ([float (joint [1].replace(’,”,".7)),
float (joint [2].replace(’,’,7.7)),
float (joint [3].replace(’,","."))])

if joint [0] = ’Neck’:
Neck.append ([float (joint [1].replace(’,",7.")),
float (joint [2].replace(’,7,7.7)),
float (joint [3].replace(’,7,7."))])

if joint [0] == ’Head’:
Head .append ([float (joint [1].replace(’,’,".7)),
float (joint [2].replace(’,7,7.7)),
float (joint [3].replace(’,","."))])

if joint [0] = ’ShoulderLeft ":
ShoulderLeft .append ([float (joint [1].replace(’,”,"."7)),
float (joint [2].replace(’,7,7.7)),
float (joint [3].replace(’,7, . "))])

if joint [0] == ’ElbowLeft ":

APENDICE B. Cédigo Fonte: Algoritmo para Testes de Precisio

74

ElbowLeft .append ([float (joint [1].replace(’,",’.")),
float (joint [2].replace(’,7,7.7)),
float (joint [3].replace(’,",".7))])

if joint [0] = ’*WristLeft ":
WristLeft .append ([float (joint [1].replace(’,”,"."7)),
float (joint [2].replace(’,’,7.7)),
float (joint [3].replace(’,","."))])

if joint [0] = ’HandLeft :
HandLe&.append([f]oat(Jo1nt[].replace(7,7,7.7)),
float (joint [2].replace (7)),
float (joint [3].replace (7, 00

if joint [0] = ’ShoulderRight ’:
ShoulderRight .append ([float (joint [1].replace(’,",7.")),
float (joint [2].replace(’,’,7.7)),
float (joint [3].replace(’,7,"."))])

if joint [0] = ’ElbowRight ":
ElbowRight . append ([float (joint [1].replace(’,”,".")),
float (joint [2].replace(’,7,7.7)),
float (joint [3].replace(’,",".7))])

if joint [0] = ’*WristRight ":
WristRight . append (| float (joint [1].replace(’,",7.")),
float (joint [2].replace(’,,7.7)),
float (joint [3].replace(’,","."))])

if joint [0] = ’HandRight ":
HandRight .append ([float (joint [1].replace(’,’,’.7)),
float (joint [2].replace(’,7,7.7)),
float (joint [3].replace(’,”,"."))])

if joint [0] = ’HipLeft ":

7,7,7‘7))’

HipLeft .append ([float (joint [1]. replace (
float (joint [2].replace(’,’,7.7)),
float (joint [3].replace(’,","."))])

APENDICE B. Cédigo Fonte: Algoritmo para Testes de Precisio

75

if joint [0] = ’KneeLeft ":
KneeLeft.append([float(JOlnt[].replace(7,7,7.7)),
float (joint [2].replace (7, 7))
float (joint [3].replace (7, N

if joint [0] == ’AnkleLeft ":
AnkleLeft .append ([float (joint [1]. replace(’,”,"."7)),
float (joint [2].replace(’,7,7.7)),
float (joint [3].replace(’,","."))])

if joint [0] = ’FootLeft ":
FootLeft.append([roat(JOlnt[].replace(7,7,7.7)),
float (joint [2].replace (7, 7))
float (joint [3].replace (7, N

if joint [0] = ’HipRight ":
HipRight.append([float(JOlnt[].replace(7,7,7.7)),
float (joint [2].replace (7, 1)),
float (joint [3].replace (7, D)

if joint [0] = ’KneeRight ":
KneeRight . append ([float (joint [1].replace(’,",7. 7)),
float (joint [2].replace(’,7,7.7)),
float (joint [3].replace(’,7, . "))])

if joint [0] == ’"AnkleRight ":
AnkleRight . append ([float (joint [1].replace(’,”,".7)),
float (joint [2].replace(’,7,7.7)),
float (joint [3].replace(’,7,"."))])

if joint [0] = ’FootRight ":
FootRight.append ([float (joint [1].replace(’,",7. 7)),
float (joint [2].replace(’,’,7.7)),
float (joint [3].replace(’,7,"."))])

if joint [0] == ’SpineShoulder ’:
SpineShoulder.append ([float (joint [1].replace(’,",".7)),
float (joint [2].replace(’,7,7.7)),

float (joint [3].replace(’,","."))])

APENDICE B. Cédigo Fonte: Algoritmo para Testes de Precisio

if joint [0] = ’HandTipLeft ":
HandTipLeft.append ([float (joint [1].replace (7,
float (joint [2].replace(’,,7.7)),
float (joint [3].replace(’,","."))])

if joint [0] = ’ThumbLeft :
ThumbLeft . append ([float (joint [1]. replace (",
float (joint [2].replace(’,7,7.7)),
float (joint [3].replace(”,7,".7))])

if joint [0] = ’'HandTipRight ":
HandTipRight.append ([float (joint [1]. replace ('’
float (joint [2].replace(’,,7.7)),
float (joint [3].replace(’,","."))])

if joint [0] = ’ThumbRight :
ThumbRight . append ([float (joint [1]. replace (7,
float (joint [2].replace(’,7,7.7)),
float (joint [3].replace(”,7,".7))])

WristRightX = []
WristRightY = |[]
WristRightZ = []

for coords in WristLeft:
WristRightX . append(coords[0])
WristRightY . append (coords[1])
WristRightZ .append(coords [2])

ElbowRightX = []
ElbowRightY = []
ElbowRightZ = []

for coords in ElbowLeft:
ElbowRightX .append(coords [0])
ElbowRightY . append (coords [1])
ElbowRightZ . append(coords [2])

APENDICE B. Cédigo Fonte: Algoritmo para Testes de Precisio

ShoulderRightX = []
ShoulderRightY
ShoulderRightZ = []

—

for coords in ShoulderLeft:
ShoulderRightX .append (coords [0])
ShoulderRightY . append (coords [1])
ShoulderRightZ .append (coords [2])

chosen =

plt.plot (chosen)
plt .show ()

B.3 genParmsPlotter.py

from matplotlib import pyplot as plt

filel = open(’lsgp.txt’, 'r’)

lines = [line.split() for line in filel |

rightKneeAngle = []
leftKneeAngle = []
rightElbowAngle = []
leftElbowAngle = []
rightHandAngle = []
leftHandAngle = []
rightHandInclination = []
leftHandInclination = []
rightFootAngle = []
leftFootAngle = []
rightFootInclination = []
leftFootInclination = []
rightLeglnclination = []
leftLegInclination = []
rightLegPendulum = []
leftLegPendulum = []
right ArmAngle = []

left ArmAngle = []

right ArmInclination = []

APENDICE B. Cédigo Fonte: Algoritmo para Testes de Precisio 78

leftArmInclination = []
right ArmTwist = []
left ArmTwistn = []
torsoAngle = []

]

torsoPendulum = []

torsoTwist = |

neckAngle = []
headAngle = []
headPendulum = []

verticallnclination = []

for genericParameter in lines:

if genericParameter [0] = ’rightKneeAngle ’:

rightKneeAngle.append (float (genericParameter [1].replace(’,’,7.")))
if genericParameter [0] = ’leftKneeAngle ’:

leftKneeAngle.append(float (genericParameter [1].replace(’,’,7.7)))
if genericParameter [0] = ’rightElbowAngle ’:

rightElbowAngle .append(float (genericParameter [1]. replace(’,",7.7)))
if genericParameter [0] = ’leftElbowAngle ’:

leftElbowAngle . append (float (genericParameter [1].replace(’,’,’.")))
if genericParameter [0] = ’rightHandAngle ’:

rightHandAngle . append (float (genericParameter [1].replace(’,,7.7)))
if genericParameter [0] = ’leftHandAngle *:

leftHandAngle . append (float (genericParameter [1]. replace(’,’,7.7)))
if genericParameter [0] = ’'rightHandInclination’

rightHandInclination .append(float (genericParameter [1]. replace (’," "’

if genericParameter [0] = ’leftHandInclination :
leftHandInclination .append(float (genericParameter [1].replace(’,’, . ")
if genericParameter [0] = ’'rightFootAngle ’:

rightFootAngle . append(float (genericParameter [1].replace(’,",7.7)))

APENDICE B. Cédigo Fonte: Algoritmo para Testes de Precisio 79

if genericParameter [0] = ’leftFootAngle ’:
leftFootAngle.append(float (genericParameter [1].replace(’,’,".7)))
if genericParameter [0] = ’rightFootlnclination :

rightFootInclination .append(float (genericParameter [1].replace (

if genericParameter [0] = ’leftFootlnclination :

leftFootInclination .append(float (genericParameter [1].replace (

if genericParameter [0] = ’'rightLegInclination ’

rightLeglnclination .append(float (genericParameter [1].replace

’ .

if genericParameter [0] = ’leftLeglnclination

(

leftLegInclination .append(float (genericParameter [1].replace (’

).

if genericParameter [0] = ’rightLegPendulum

rightLegPendulum . append (float (genericParameter [1]. replace ('’

Y

b

b

Y

Y

Y

’

Y Y

if genericParameter [0] = ’leftLegPendulum ’:
leftLegPendulum . append (float (genericParameter [1]. replace(’,",7.7)))
if genericParameter [0] = ’rightArmAngle ":

right ArmAngle . append(float (genericParameter [1]. replace (’, ",
if genericParameter [0] = ’leftArmAngle ’:
left ArmAngle.append(float (genericParameter [1]. replace (7, .

I Y

if genericParameter [0] = ’'rightArmInclination :
right ArmInclination .append(float (genericParameter [1].replace(’,’, . ")
if genericParameter [0] = ’leftArmInclination’

leftArmInclination .append(float (genericParameter [1]. replace (

Y

b

)

if genericParameter [0] = ’rightArmTwist ’:
right ArmTwist . append(float (genericParameter [1].replace (7, ,7.7)))
if genericParameter [0] = ’leftArmTwistn ’:

left ArmTwistn .append(float (genericParameter [1].replace(’,,7.7)))

APENDICE B. Cédigo Fonte: Algoritmo para Testes de Precisio 80

if genericParameter [0] = ’torsoAngle ’:
torsoAngle.append (float (genericParameter [1].replace(’,7,"."7)))
if genericParameter [0] = ’torsoTwist ’:
torsoTwist .append(float (genericParameter [1].replace(’,’,7.")))
if genericParameter [0] = ’torsoPendulum ’:
torsoPendulum . append (float (genericParameter [1].replace(’,’,7.")))
if genericParameter [0] = ’neckAngle ’:
neckAngle.append(float (genericParameter [1].replace(’,’,7.")))
if genericParameter [0] = ’headAngle ’:
headAngle.append(float (genericParameter [1].replace(’,’,7.7)))
if genericParameter [0] = ’“headPendulum ’:
headPendulum . append (float (genericParameter [1]. replace(’,’,7.7)))
if genericParameter [0] = ’verticallnclination ’:
verticallnclination .append(float (genericParameter [1].replace(’,’ . ")
chosen =

plt.plot (chosen)
plt .show ()

81

APENDICE C - Cédigo Fonte: Aplicativo
Kinect V1

namespace Microsoft.Samples. Kinect.SkeletonBasics
{

using System .I10;

using System .Windows;

using System.Windows. Media;

using Microsoft . Kinect;

using System:;

using System. Collections. Generic;
using System.Ling;

using KinectHumanMovementEvaluation ;
using KHMESDK1 8 = KHMESDKI1 8;

using KHMESDK2 0 = KHMESDK2 0;

/// <summary>

/// Interaction logic for MainWindow.xaml
/// </summary>

public partial class MainWindow : Window
{

/// <summary>

/// Width of output drawing

/// </summary>

private const float RenderWidth = 640.0f;

/// <summary>

/// Height of our output drawing

/// </summary>

private const float RenderHeight = 480.0f;

/// <summary>
/// Thickness of drawn joint lines
/// </summary>

private const double JointThickness = 3;

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 82

/// <summary>

/// Thickness of body center ellipse

/// </summary>

private const double BodyCenterThickness = 10;

/// <summary>

/// Thickness of clip edge rectangles

/// </summary>

private const double ClipBoundsThickness = 10;

/// <summary>
/// Brush used to draw skeleton center point
/// </summary>

private readonly Brush centerPointBrush = Brushes.Blue;

/// <summary>

/// Brush used for drawing joints that are currently tracked

/// </summary>

private readonly Brush trackedJointBrush = new SolidColorBrush (Color.Fron

/// <summary>
/// Brush used for drawing joints that are currently inferred
/// </summary>

private readonly Brush inferredJointBrush = Brushes. Yellow;

/// <summary>
/// Pen used for drawing bones that are currently tracked
/// </summary>

private readonly Pen trackedBonePen = new Pen(Brushes.Green, 6);

/// <summary>
/// Pen used for drawing bones that are currently inferred
/// </summary>

private readonly Pen inferredBonePen = new Pen(Brushes.Gray, 1);

/// <summary>
/// Active Kinect sensor
/// </summary>

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 83

private KinectSensor sensor;

/// <summary>

/// Drawing grousp for skeleton rendering output
/// </summary>

private DrawingGroup drawingGroup;

private DrawingGroup drawingGroup?2;

/// <summary>

/// Drawing images that we will display
/// </summary>

private Drawinglmage imageSource;

private Drawinglmage imageSource2;

//

//
// New variables:

//
//

// Flags:

/// <summary>
/// "Photo" button handling flag
/// </summary>
private bool skelPhoto = false;

/// <summary>
/// "Save' button handling flag
/// </summary>

private bool skelSave = false;

/// <summary>
/// "Capture Mode"' button handling flag
/// </summary>

private bool captureModeOn = true;

/// <summary>
/// "Comparing Mode" button handling flag

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 84

/// </summary>

private bool comparingModeOn = false;

/// <summary>
/// "Model" checkbox handling flag
/// </summary>

private bool modelOn = false;

/// <summary>

/// "Load Model Photo" button handling flag
/// </summary>

private bool loadModelPhoto = false;

/// <summary>

/// "Load Photo" button handling flag
/// </summary>

private bool loadPhoto = false;

/// <summary>

/// "Seated Mode" checkbox handling flag
/// </summary>

private bool seatedModeOn = false;

/// <summary>

/// Flags the plotting of photos captured with "Seated Mode" enabled
/// </summary>

private bool plotInSeatedMode = false;

/// <summary>
/// Flags the plotting lock (by looping the same image) on the right scre
/// </summary>

private bool photoScreenLock = false;

/// <summary>
/// '"REC" button handling flag
/// </summary>

private bool recOn = false;

/// <summary>

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 85

/// Flags the beginning of the "starting photo" selection process
/// </summary>
private bool startingPhotoModeOn = false;

/// <summary>

/// "Starting Photo"' button handling flag
/// </summary>

private bool startingPhotoSelected = false;

/// <summary>

/// "Load Model Video' button handling flag
/// </summary>

private bool loadModelVideo = false;

/// <summary>
/// "Load Video' button handling flag
/// </summary>

private bool loadVideo = false;

/// <summary>

/// "Start Loop"' button handling flag (left screen)
/// </summary>

private bool loopOnModel = false;

/// <summary>
/// "Start Loop" button handling flag (right screen)
/// </summary>

private bool loopOnUser = false;
// Skeleton data:

/// <summary>

/// Holds a pose data

/// </summary>

private Skeleton skelData = new Skeleton ();

/// <summary>
/// Holds a movement data (set of poses)
/// </summary>

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 86

List <Skeleton> skelsData = new List<Skeleton >();

/// <summary>

/// Holds a skeleton data loaded from a text file (model)
/// </summary>

private Skeleton loadModelSkel = new Skeleton ();

/// <summary>

/// Holds a skeleton data loaded from a text file (user)
/// </summary>

private Skeleton loadPhotoSkel = new Skeleton ();

// Indexes:

/// <summary>

/// Holds the currently plotted pose’s index (model)
/// </summary>

int shiftValueModel = 0;

/// <summary>

/// Holds the currently plotted pose’s index (user)
/// </summary>

int shiftValueUser = 0;

/// <summary>

/// Holds the selected starting photo’s index
/// </summary>

int startingPhotolndex = 0;

// Control variables:

/// <summary>

/// Used for the plotting speed control (model)
/// </summary>

int loopDelayModel = 0;

/// <summary>
/// Used for the plotting speed control (user)
/// </summary>

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 87

int loopDelayUser = 0;

/// <summary>

/// Used for the plotting speed control (setup value)
/// </summary>

int loopDelaySetup = 0;

/// <summary>

/// Holds the current movement’s length (modelo)
/// </summary>

int videoLengthCountModel = 0;

/// <summary>

/// Holds the current movement’s length (user)
/// </summary>

int videoLengthCountUser = 0;

/// <summary>

/// Used in Sphere method (pose evaluation).

/// Define how the evaluation process will occur, and must be assigned
before the program start.

/// </summary>

double radiusPose = 30;

double minScorePose = 0.3;

/// <summary>

/// Used in Sphere method (movement evaluation).

/// Define how the evaluation process will occur, and must be assigned
before the program start.

/// </summary>

double radiusMovement = 80;

double radiusStep = 30;

double minScoreMovement = 0.3;

double scoreStep = 0.02;

// Paths:

string photoCorePathModel = @"C:\ Users\Gian\Desktop\Poli 2015\ Segundo Ser
string photoCorePathUser = @"C:\ Users\Gian\Desktop\Poli 2015\ Segundo Sem

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 88

string videoCorePathModel = @"C:\ Users\Gian\Desktop\Poli 2015\ Segundo Se1
referencia ";

string videoCorePathUser = @Q"C:\ Users\ Gian\Desktop\Poli 2015\Segundo Sem
string compareResultPath = @Q"C:\ Users\Gian\Desktop\Poli 2015\ Segundo Sem

// File names:

string photoCoreNameModel = "poseTeste referencia';
string photoCoreNameUser = "poseTeste usuario';

string videoCoreNameModel = "movimentoTeste referencia ";
string videoCoreNameUser = "movimentoTeste usuario_ ";
string compareResultName = "resultadoTeste";

//
//
// Main:
//
//

/// <summary>

/// Initializes a new instance of the MainWindow class.
/// </summary>

public MainWindow ()

{

InitializeComponent ();

}

/// <summary>

/// Draws indicators to show which edges are clipping skeleton data

/// </summary>

/// <param name="skeleton'>skeleton to draw clipping information

for </param>

/// <param name="drawingContext'>drawing context to draw to</param>
private static void RenderClippedEdges(Skeleton skeleton , DrawingContext
drawingContext)

{
if (skeleton.ClippedEdges.HasFlag(FrameEdges.Bottom))

{

drawingContext. DrawRectangle (

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 89

Brushes.Red,

null ,

new Rect (0, RenderHeight — ClipBoundsThickness, RenderWidth
ClipBoundsThickness));

}

if (skeleton.ClippedEdges.HasFlag(FrameEdges.Top))
{

drawingContext.DrawRectangle (

Brushes.Red,

null ,

new Rect (0, 0, RenderWidth, ClipBoundsThickness));

}

if (skeleton.ClippedEdges.HasFlag(FrameEdges. Left))
{

drawingContext . DrawRectangle (

Brushes.Red,

null ,

new Rect(0, 0, ClipBoundsThickness, RenderHeight));

}

if (skeleton.ClippedEdges.HasFlag(FrameEdges. Right))
{

drawingContext . DrawRectangle (

Brushes.Red,

null ,

new Rect(RenderWidth — ClipBoundsThickness, 0, ClipBoundsThickness,
RenderHeight));

}
}

/// <summary>

/// Execute startup tasks

/// </summary>

/// <param name='"sender'>object sending the event</param>
/// <param name="e'>event arguments</param>

private void WindowLoaded(object sender, RoutedEventArgs e)

{

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 90

// Create the drawing groups we’ll use for drawing
this.drawingGroup = new DrawingGroup ();

this.drawingGroup2 = new DrawingGroup ();

// Create the image sources that we can use in our image control
this.imageSource = new Drawinglmage(this.drawingGroup);

this.imageSource2 = new Drawinglmage(this.drawingGroup2);

// Display the drawing using our image control
Image. Source = this.imageSource;

Image2.Source = this.imageSource?2;

// Look through all sensors and start the first connected one.
// This requires that a Kinect is connected at the time of app startup.
// To make your app robust against plug/unplug.

foreach (var potentialSensor in KinectSensor.KinectSensors)

{

if (potentialSensor.Status = KinectStatus.Connected)
{

this.sensor = potentialSensor;

break ;

}
}

if (null !'= this.sensor)

{

// Turn on the skeleton stream to receive skeleton frames

this.sensor.SkeletonStream . Enable ();

// Add an event handler to be called whenever there is new color
frame data

this.sensor.SkeletonFrameReady += this.SensorSkeletonFrameReady ;

// Start the sensor!
try

{

this.sensor.Start ();

}

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1

91

catch (IOException)

{
this.sensor = null;
}
}

if (null = this.sensor)

{
// "no Kinect ready" error
}
}

/// <summary>

/// Execute shutdown tasks

/// </summary>

/// <param name='sender'>object sending the event</param>
/// <param name="e'>event arguments</param>

private void WindowClosing(object sender

System . ComponentModel . CancelEventArgs e)

{

if (null != this.sensor)

{
this.sensor.Stop();
}
}

/// <summary>

/// Event handler for Kinect sensor’s SkeletonFrameReady event
/// </summary>

/// <param name='"sender'>object sending the event</param>

/// <param name="e">event arguments</param>

private void SensorSkeletonFrameReady (object sender,

SkeletonFrameReadyEventArgs e)

{

Skeleton [] skeletons = new Skeleton [0];

// copying the captured skeleton data

using (SkeletonFrame skeletonFrame = e.OpenSkeletonFrame())

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 92

{

if (skeletonFrame != null)
{
skeletons = new Skeleton [skeletonFrame.SkeletonArrayLength];

skeletonFrame . CopySkeletonDataTo (skeletons);

}
}

// left screen
using (DrawingContext dc = this.drawingGroup.Open/())

{

// draw a transparent background to set the render size
dc.DrawRectangle (Brushes. Black, null ; new Rect (0.0, 0.0, RenderWidth,
RenderHeight));

// if capture mode is on
if (skeletons.Length != 0 && captureModeOn)
{

foreach (Skeleton skel in skeletons)

{

RenderClippedEdges (skel , dc); // show clipping indicators

if (skel.TrackingState = SkeletonTrackingState.Tracked) // if
the skeleton
is being tracked

{

this . DrawBonesAndJoints(skel , dc); // draw skeleton

}

else if (skel.TrackingState = SkeletonTrackingState.PositionOnly)
only the position

{

// draw position

de. DrawEllipse (

this.centerPointBrush ,

null |

this.SkeletonPointToScreen (skel.Position),

BodyCenterThickness ,

BodyCenterThickness);

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 93

// else if comparing mode is on
else if (comparingModeOn)

{
if (loadModelPhoto) // if loading photo

{

string [| modelLines = File.ReadAllLines (Path.Combine(photoCorePathModel ,
photoCoreNameModel + ".txt"));

loadSkelDataFromText (modelLines , true);
this.DrawBonesAndJoints(loadModelSkel , dc);

}

else if (loadModelVideo) // else if loading video
{

if (loopOnModel = true) // if the video is being looped

{

// setting the plotting speed
if (loopDelayModel > 0) loopDelayModel——; // if a delay is set
(through loopDelaySetup), wait

else // after waiting (or if a delay is not set)

{

shiftValueModel++; // incrementing index
loopDelayModel = loopDelaySetup; // (re)setting delay

// checking current pose and closing loop
if (shiftValueModel < 0) shiftValueModel = videoLengthCountModel;
if (shiftValueModel > videoLengthCountModel) shiftValueModel = 0;

// reading data

string [| modelLines = File.ReadAllLines (Path.Combine(videoCorePathModel,
videoCoreNameModel + shiftValueModel + ".txt"));

loadSkelDataFromText (modelLines, true);

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 94

// plotting skeleton
this.DrawBonesAndJoints(loadModelSkel , dc);

}
}

// prevent drawing outside of our render area
this.drawingGroup . ClipGeometry = new RectangleGeometry (new Rect (0.0, 0.0,
RenderWidth , RenderHeight));

}

// Right screen

using (DrawingContext dc2 = this.drawingGroup2.Open())

{

// draw a transparent background to set the render size
dc2.DrawRectangle (Brushes. Black, null ; new Rect(0.0, 0.0, RenderWidth,
RenderHeight));

// if capture mode is on

if (captureModeOn)

{

// if a photo (pose) is being taken
if (skelPhoto)

{

foreach (Skeleton skel in skeletons)

{
if (skel.TrackingState = SkeletonTrackingState. Tracked)

{

this.DrawBonesAndJoints (skel , dc2); // plotting skeleton
skelData = skel; // holding the data

skelsData .Add(skelData); // add the new skeleton to the recording data
(in this case, skelsData.length will always be 1)
skelPhoto = false; // end photo

}

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 95

// locking the screen (by looping the same skeleton), only happens when
a photo is taken ("Take Photo" button)
if (photoScreenLock) this.DrawBonesAndJoints(skelsData [0], dc2);

// if a video (movement) is being recorded
if (recOn)
{

foreach (Skeleton skel in skeletons)

{

if (skel.TrackingState = SkeletonTrackingState. Tracked)

{
this.DrawBonesAndJoints (skel , dc2); // plotting skeleton
skelData = skel; // holding the data

skelsData .Add(skelData); // add the new skeleton to the recording data

}

// selecting the starting photo

else if (startingPhotoModeOn)

{

// checking current pose and closing loop

if (shiftValueUser < 0) shiftValueUser = (skelsData.Count — 1);
if (shiftValueUser > (skelsData.Count — 1)) shiftValueUser = 0;

this.DrawBonesAndJoints (skelsData [shiftValueUser], dc2); // plotting the

currently selected pose

// if the "Starting Photo" button was pressed

if (startingPhotoSelected)

{

startingPhotoIndex = shiftValueUser; // holding starting photo index
startingPhotoSelected = false; // end starting photo selection

}
}
}

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 96

else if (comparingModeOn)

{
if (loadPhoto) // if a photo is being loaded

{

string [| photoLines = File.ReadAllLines (Path.Combine(photoCorePathUser ,
photoCoreNameUser + ".txt"));

loadSkelDataFromText (photoLines , false);
this.DrawBonesAndJoints(loadPhotoSkel , dc2);

}

else if (loadVideo) // else if a video is being loaded
{

if (loopOnUser = true) // if the video is being looped
{
// setting the plotting speed
if (loopDelayUser > 0) loopDelayUser——; // if a delay is set
(through loopDelaySetup), wait
else // after waiting (or if a delay is not set)
{
shiftValueUser++; // incrementing index
loopDelayUser = loopDelaySetup; // (re)setting delay

// checking current pose and closing loop
if (shiftValueUser < 0) shiftValueUser = videoLengthCountUser;
if (shiftValueUser > videoLengthCountUser) shiftValueUser = 0;

// reading data

string [|] photoLines = File.ReadAllLines (Path.Combine(videoCorePathUser ,
videoCoreNameUser +

shiftValueUser + ".txt"));

loadSkelDataFromText (photoLines, false);

// plotting skeleton
this.DrawBonesAndJoints(loadPhotoSkel ; dc2);

}
}
}

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 97

// Saving files
if (skelSave)

{

skelsData .RemoveRange (0, startingPhotolndex); // setting the new starting

pose
for (int j = 0; j < skelsData.Count; j++) {
string stringData = null; // clearing the new line

foreach (Joint joint in skelsData[j]. Joints)

{
if (seatedModeOn)

{

stringData += string.Format("'{0} {1} {2} {3} SeatedModeOn' + Environment.
joint .JointType, joint.Position.X, joint.Position.Y, joint.Position.Z);

}

else

{
stringData += string.Format('{0} {1} {2} {3} SeatedModeOff" 4+ Environment

joint . JointType, joint.Position.X, joint.Position.Y, joint.Position.Z);

}
}

// if it ’s a model
if (modelOn)

{
if (skelsData.Count = 1) // pose

{
File. WriteAllText (Path.Combine (photoCorePathModel , photoCoreNameModel +

stringData) ;

}

else // movement

{
File. WriteAllText (Path.Combine (videoCorePathModel , videoCoreNameModel +]

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1

98

stringData);

}
}

// if not
if (!modelOn)

else

{

if (skelsData.Count =— 1) // pose

{

File. WriteAllText (Path.Combine (photoCorePathUser, photoCoreNameUser + ".t
stringData);

}

else // movement

{

File. WriteAllText (Path.Combine(videoCorePathUser , videoCoreNameUser + j A
stringData);

}
}
}

skelSave = false; // end save

photoScreenLock = false; // end screen lock
skelsData.Clear (); // clearing the saved data
startingPhotoIndex = 0; // clearing the starting index

}
}

/1]
/1]
/1]
/1]
/1]

<sumimary>

</summary>

Draws a skeleton s bones and joints

<param name="skeleton'>skeleton to draw</param>

<param name="drawingContext">drawing context to draw to</param>

private void DrawBonesAndJoints(Skeleton skeleton, DrawingContext drawing

{

// Render Torso

this
this
this
this

.DrawBone (skeleton

.DrawBone
.DrawBone

.DrawBone

(
(
(

skeleton
skeleton

skeleton

Y

I

Y

Y

drawingContext ,
drawingContext ,
drawingContext ,

drawingContext ,

JointType
JointType
JointType
JointType

.Head, JointType.
.ShoulderCenter
.ShoulderCenter ,
.ShoulderCenter ,

Shoulde
JointTy
Joint Ty
JointTy

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 99

this.DrawBone(skeleton ,
this.DrawBone(skeleton ,

this .DrawBone (skeleton ,

// Left Arm
this.DrawBone (skeleton ,
this.DrawBone(skeleton ,

this.DrawBone(skeleton ,

// Right Arm
this.DrawBone(skeleton ,
this.DrawBone(skeleton ,

this.DrawBone(skeleton ,

// Left Leg
this.DrawBone (skeleton ,
this.DrawBone(skeleton ,

this.DrawBone(skeleton ,

// Right Leg
this.DrawBone(skeleton ,
this.DrawBone(skeleton ,

this.DrawBone(skeleton ,

// Render Joints

foreach (Joint joint in

{

Brush drawBrush = null;

if (joint.TrackingState

{

drawingContext , JointType.Spine, JointType.HipCe:
drawingContext , JointType.HipCenter, JointType.H
drawingContext , JointType.HipCenter, JointType.H

drawingContext , JointType.ShoulderLeft , JointType
drawingContext , JointType.ElbowLeft, JointType. W
drawingContext , JointType. WristLeft , JointType.H.

drawingContext , JointType.ShoulderRight , JointTyy
drawingContext , JointType.ElbowRight, JointType.\
drawingContext , JointType.WristRight , JointType.l

drawingContext , JointType.HipLeft, JointType.Kne
drawingContext , JointType.KneeLeft, JointType.An
drawingContext , JointType.AnkleLeft, JointType.F:

drawingContext , JointType.HipRight, JointType.Kn
drawingContext , JointType.KneeRight, JointType. A
drawingContext , JointType.AnkleRight , JointType.]l

skeleton . Joints)

— JointTrackingState . Tracked || comparingModeOn)

drawBrush = this.trackedJointBrush;

}

else if (joint.TrackingState = JointTrackingState.Inferred)

{

drawBrush = this.inferredJointBrush;

}

if (drawBrush != null)

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 100

{

drawingContext. DrawEllipse (drawBrush, null, this.SkeletonPointToScreen (jc
JointThickness , JointThickness);

}
}
}

/// <summary>

/// Maps a SkeletonPoint to lie within our render space and converts to I
/// </summary>

/// <param name='"skelpoint'>point to map</param>

/// <returns>mapped point</returns>

private Point SkeletonPointToScreen (SkeletonPoint skelpoint)

{

// Convert point to depth space.

// We are not using depth directly , but we do want the points in our 6403
output resolution.

DepthImagePoint depthPoint = this.sensor.CoordinateMapper. MapSkeletonPoin
return new Point(depthPoint.X, depthPoint.Y);

}

/// <summary>

/// Draws a bone line between two joints

/// </summary>

/// <param name="skeleton'>skeleton to draw bones from</param>

/// <param name="drawingContext'>drawing context to draw to</param>
/// <param name="jointType0'>joint to start drawing from</param>
/// <param name="jointTypel'>joint to end drawing at</param>
private void DrawBone(Skeleton skeleton, DrawingContext drawingContext, .
jointTypeO, JointType jointTypel)

{

Joint joint0 = skeleton.Joints[jointTypeO];

Joint jointl = skeleton.Joints[jointTypel];

// If we can’t find either of these joints, exit
if ((joint0.TrackingState = JointTrackingState.NotTracked ||
jointl.TrackingState =— JointTrackingState.NotTracked) && captureModeOn)

{

return;

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 101

// Don’t draw if both points are inferred
if ((joint0.TrackingState =— JointTrackingState.Inferred &&
jointl.TrackingState =— JointTrackingState.Inferred) && captureModeOn)

{

return ;

}

// We assume all drawn bones are inferred unless BOTH joints are tracked
Pen drawPen = this.inferredBonePen;

if ((joint0.TrackingState = JointTrackingState.Tracked && jointl.Trackir
JointTrackingState . Tracked) || comparingModeOn)

({hraWPen = this.trackedBonePen;

}

if (comparingModeOn && plotInSeatedMode)

{

if ((jointTypeO != JointType.HipCenter) && (jointTypel != JointType.HipC
(jointTypeO != JointType.Spine) && (jointTypel != JointType.Spine) &&

(jointTypeO != JointType.HipLeft) && (jointTypel != JointType.HipLeft) &«
(jointTypeO != JointType.KneeLeft) && (jointTypel != JointType.KneeLeft)
(jointTypeO != JointType.AnkleLeft) && (jointTypel != JointType.AnkleLeft
(jointTypeO != JointType.FootLeft) && (jointTypel != JointType.FootLeft)
(jointTypeO != JointType.HipRight) && (jointTypel != JointType.HipRight)
(jointTypeO != JointType.KneeRight) && (jointTypel != JointType.KneeRight
(jointTypeO != JointType.AnkleRight) && (jointTypel != JointType.AnkleRig
(jointType0O != JointType.FootRight) && (jointTypel != JointType.FootRight
{
d
¥
}

rawingContext . DrawLine (drawPen, this.SkeletonPointToScreen(joint0.Positi

else drawingContext.DrawLine(drawPen, this.SkeletonPointToScreen(joint0.]

}

/// <summary>
/// Handles the checking or unchecking of the seated mode combo box

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 102

/// </summary>

/// <param name='sender'>object sending the event</param>

/// <param name='e'>event arguments</param>

private void CheckBoxSeatedModeChanged (object sender, RoutedEventArgs e)

{

if (null !'= this.sensor)

{
if (this.checkBoxSeatedMode.IsChecked.GetValueOrDefault ())

{
this.sensor.SkeletonStream . TrackingMode = SkeletonTrackingMode . Seated;
seatedModeOn = true;

}

else

{

this.sensor.SkeletonStream . TrackingMode = SkeletonTrackingMode. Default ;
seatedModeOn = false;

}
}
}

//
//
// New methods:
//
//

/// <summary>

/// Load a skeleton object from a text file

/// </summary>

/// <param name="dataLines"></param>

private void loadSkelDataFromText (string[] dataLines, bool isModel)

{

if (dataLines[0]. Split(null)[4] = "SeatedModeOn") plotInSeatedMode = tru
photo was taken in seated mode
else if (dataLines|[0].Split(null)[4] = "SeatedModeOff") plotInSeatedMode

foreach (string line in datalLines)

{

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 103

// creating a new point (holding coordinates)
var newPoint = new SkeletonPoint

{

X = Convert. ToSingle(line.Split (null)[1]),

Y = Convert. ToSingle(line.Split (null)[2]),

Z = Convert.ToSingle(line.Split (null)[3]),

b

// checking the type of the current joint (current line)
if (line.Split(null)[0] = "HipCenter")
{

if (isModel) // checking the type of the data

{

var newJoint = loadModelSkel. Joints [JointType.HipCenter|; // creating new
newlJoint . Position = newPoint; // setting the joint’s position
newlJoint . TrackingState = JointTrackingState. Tracked;
loadModelSkel. Joints [JointType. HipCenter|] = newlJoint; // updating the ske

}

else // the same is done if the joint is not a "model" type, as shown bel
{

var newJoint = loadPhotoSkel. Joints[JointType.HipCenter |;
newJoint . Position = newPoint;

newlJoint . TrackingState = JointTrackingState. Tracked;

loadPhotoSkel. Joints [JointType. HipCenter|] = newJoint ;

}
}

// the same is done for all the other joints

else if (line.Split(null)[0] = "Spine")

{

if (isModel)

{

var newJoint = loadModelSkel. Joints [JointType. Spine |;
newJoint . Position = newPoint;

newlJoint . TrackingState = JointTrackingState. Tracked;

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 104

loadModelSkel. Joints [JointType.Spine| = newlJoint;

}

else

{

var newJoint = loadPhotoSkel. Joints [JointType. Spine |;
newJoint . Position = newPoint;

newJoint . TrackingState = JointTrackingState. Tracked;
loadPhotoSkel. Joints [JointType.Spine| = newlJoint;

}
}

else if (line.Split(null)[0] = "ShoulderCenter")

{

if (isModel)

{

var newJoint = loadModelSkel. Joints [JointType.ShoulderCenter |;
newJoint . Position = newPoint;

newlJoint . TrackingState = JointTrackingState. Tracked;
loadModelSkel. Joints [JointType.ShoulderCenter| = newlJoint;

}

else

{

var newlJoint = loadPhotoSkel. Joints [JointType.ShoulderCenter |;
newlJoint . Position = newPoint;

newlJoint . TrackingState = JointTrackingState. Tracked;
loadPhotoSkel. Joints [JointType.ShoulderCenter] = newJoint ;

}
}

else if (line.Split(null)[0] = "Head")

{

if (isModel)

{

var newJoint = loadModelSkel. Joints [JointType.Head];
newJoint . Position = newPoint;

newJoint . TrackingState = JointTrackingState. Tracked;
loadModelSkel. Joints [JointType.Head| = newlJoint;

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 105

else

{

var newJoint = loadPhotoSkel. Joints [JointType.Head];
newJoint . Position = newPoint;

newlJoint . TrackingState = JointTrackingState. Tracked;
loadPhotoSkel. Joints [JointType.Head] = newlJoint;

}
}

else if (line.Split(null)[0] = "ShoulderLeft")

{

if (isModel)

{

var newJoint = loadModelSkel. Joints [JointType.ShoulderLeft |;
newJoint . Position = newPoint;

newlJoint . TrackingState = JointTrackingState. Tracked;
loadModelSkel. Joints [JointType. ShoulderLeft] = newJoint;

}

else

{

var newJoint = loadPhotoSkel. Joints[JointType.ShoulderLeft |;
newJoint . Position = newPoint;

newlJoint . TrackingState = JointTrackingState. Tracked;
loadPhotoSkel. Joints [JointType.ShoulderLeft] = newlJoint;

}
}

else if (line.Split(null)[0] = "ElbowLeft")

{

if (isModel)

{

var newJoint = loadModelSkel. Joints [JointType.ElbowLeft |;
newJoint . Position = newPoint;

newlJoint . TrackingState = JointTrackingState. Tracked;
loadModelSkel. Joints [JointType. ElbowLeft] = newJoint;

}

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 106

else

{

var newJoint = loadPhotoSkel. Joints[JointType.ElbowLeft |;
newJoint . Position = newPoint;

newlJoint . TrackingState = JointTrackingState. Tracked;
loadPhotoSkel. Joints [JointType. ElbowLeft] = newJoint;

}
}

else if (line.Split(null)[0] = "WristLeft")

{

if (isModel)

{

var newJoint = loadModelSkel. Joints [JointType. WristLeft |;
newlJoint . Position = newPoint;

newlJoint . TrackingState = JointTrackingState. Tracked;
loadModelSkel. Joints [JointType. WristLeft] = newJoint ;

}

else

{

var newJoint = loadPhotoSkel. Joints [JointType. WristLeft |;
newJoint . Position = newPoint;

newJoint . TrackingState = JointTrackingState. Tracked;
loadPhotoSkel. Joints [JointType. WristLeft] = newJoint;

}
}

else if (line.Split(null)[0] = "HandLeft")

{

if (isModel)

{

var newJoint = loadModelSkel. Joints [JointType.HandLeft |;
newJoint . Position = newPoint;

newlJoint . TrackingState = JointTrackingState. Tracked;
loadModelSkel. Joints [JointType.HandLeft] = newJoint;

}

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 107

else

{

var newJoint = loadPhotoSkel. Joints[JointType.HandLeft |;
newJoint . Position = newPoint;

newJoint . TrackingState = JointTrackingState. Tracked;
loadPhotoSkel. Joints [JointType.HandLeft] = newJoint;

}
}

else if (line.Split(null)[0] = "ShoulderRight")

{

if (isModel)

{

var newJoint = loadModelSkel. Joints [JointType.ShoulderRight |;
newlJoint . Position = newPoint;

newlJoint . TrackingState = JointTrackingState. Tracked;
loadModelSkel. Joints [JointType.ShoulderRight| = newJoint;

}

else

{

var newJoint = loadPhotoSkel. Joints [JointType.ShoulderRight |;
newJoint . Position = newPoint;

newlJoint . TrackingState = JointTrackingState. Tracked;
loadPhotoSkel. Joints [JointType.ShoulderRight|] = newlJoint;

}
}

else if (line.Split(null)[0] = "ElbowRight")

{

if (isModel)

{

var newJoint = loadModelSkel. Joints [JointType.ElbowRight |;
newJoint . Position = newPoint;

newJoint . TrackingState = JointTrackingState. Tracked;
loadModelSkel. Joints [JointType. ElbowRight] = newJoint;

}

else

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 108

{

var newJoint = loadPhotoSkel. Joints [JointType.ElbowRight |;
newlJoint . Position = newPoint;

newlJoint . TrackingState = JointTrackingState. Tracked;
loadPhotoSkel. Joints [JointType . ElbowRight] = newJoint ;

}
}

else if (line.Split(null)[0] = "WristRight")

{

if (isModel)

{

var newJoint = loadModelSkel. Joints [JointType. WristRight |;
newJoint . Position = newPoint;

newJoint . TrackingState = JointTrackingState. Tracked;
loadModelSkel. Joints [JointType. WristRight] = newJoint;

}

else

{

var newJoint = loadPhotoSkel. Joints[JointType. WristRight |;
newJoint . Position = newPoint;

newlJoint . TrackingState = JointTrackingState. Tracked;
loadPhotoSkel. Joints [JointType. WristRight| = newJoint;

}
}

else if (line.Split(null)[0] = "HandRight")

{

if (isModel)

{

var newJoint = loadModelSkel. Joints [JointType.HandRight |;
newJoint . Position = newPoint;

newlJoint . TrackingState = JointTrackingState. Tracked;
loadModelSkel. Joints [JointType . HandRight] = newlJoint ;

}

else

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1

109

var newJoint = loadPhotoSkel. Joints[JointType.HandRight |;
newJoint . Position = newPoint;

newlJoint . TrackingState = JointTrackingState. Tracked;
loadPhotoSkel. Joints [JointType.HandRight] = newJoint;

}
}

else if (line.Split(null)[0] = "HipLeft")

{

if (isModel)

{

var newJoint = loadModelSkel. Joints [JointType.HipLeft |;
newJoint . Position = newPoint;

newlJoint . TrackingState = JointTrackingState. Tracked;
loadModelSkel. Joints [JointType. HipLeft] = newlJoint;

}

else

{

var newJoint = loadPhotoSkel. Joints [JointType.HipLeft];
newJoint . Position = newPoint;

newJoint . TrackingState = JointTrackingState. Tracked;
loadPhotoSkel. Joints [JointType. HipLeft] = newlJoint;

}
}

else if (line.Split(null)[0] = "KneeLeft")

{

if (isModel)

{

var newlJoint = loadModelSkel. Joints [JointType.KneeLeft];
newJoint . Position = newPoint;

newlJoint . TrackingState = JointTrackingState. Tracked;
loadModelSkel. Joints [JointType . KneeLeft] = newJoint;

}

else

{

var newJoint = loadPhotoSkel. Joints[JointType.KneeLeft |;

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 110

newJoint . Position = newPoint;
newJoint . TrackingState = JointTrackingState. Tracked;
loadPhotoSkel. Joints [JointType.KneeLeft] = newJoint;

}
}

else if (line.Split(null)[0] = "AnkleLeft")

{

if (isModel)

{

var newJoint = loadModelSkel. Joints [JointType. AnkleLeft |;
newJoint . Position = newPoint;

newlJoint . TrackingState = JointTrackingState. Tracked;
loadModelSkel. Joints [JointType. AnkleLeft] = newJoint;

}

else

{

var newJoint = loadPhotoSkel. Joints[JointType.AnkleLeft |;
newJoint . Position = newPoint;

newJoint . TrackingState = JointTrackingState. Tracked;
loadPhotoSkel. Joints [JointType. AnkleLeft] = newJoint;

}
}

else if (line.Split(null)[0] = "FootLeft")

{

if (isModel)

{

var newJoint = loadModelSkel. Joints [JointType.FootLeft |;
newJoint . Position = newPoint;

newJoint . TrackingState = JointTrackingState . Tracked;
loadModelSkel. Joints [JointType.FootLeft] = newJoint;

}

else

{

var newJoint = loadPhotoSkel. Joints[JointType.FootLeft |;

newJoint . Position = newPoint;

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 111

newlJoint . TrackingState = JointTrackingState. Tracked;
loadPhotoSkel. Joints [JointType.FootLeft] = newJoint;

}
}

else if (line.Split(null)[0] = "HipRight")

{

if (isModel)

{

var newJoint = loadModelSkel. Joints [JointType.HipRight |;
newJoint . Position = newPoint;

newJoint . TrackingState = JointTrackingState. Tracked;
loadModelSkel. Joints [JointType. HipRight] = newlJoint;

}

else

{

var newJoint = loadPhotoSkel. Joints[JointType.HipRight |;
newJoint . Position = newPoint;

newlJoint . TrackingState = JointTrackingState. Tracked;
loadPhotoSkel. Joints [JointType . HipRight] = newlJoint;

}
}

else if (line.Split(null)[0] = "KneeRight")

{

if (isModel)

{

var newJoint = loadModelSkel. Joints [JointType.KneeRight |;
newJoint . Position = newPoint;

newJoint . TrackingState = JointTrackingState. Tracked;
loadModelSkel. Joints [JointType . KneeRight] = newlJoint;

}

else

{

var newJoint = loadPhotoSkel. Joints[JointType.KneeRight |;
newJoint . Position = newPoint;

newlJoint . TrackingState = JointTrackingState. Tracked;

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 112

loadPhotoSkel. Joints [JointType.KneeRight] = newJoint;

}
}

else if (line.Split(null)[0] = "AnkleRight")

{

if (isModel)

{

var newJoint = loadModelSkel. Joints [JointType.AnkleRight |;
newJoint . Position = newPoint;

newJoint . TrackingState = JointTrackingState. Tracked;
loadModelSkel. Joints [JointType. AnkleRight] = newJoint;

}

else

{

var newJoint = loadPhotoSkel. Joints[JointType.AnkleRight |;
newJoint . Position = newPoint;

newlJoint . TrackingState = JointTrackingState. Tracked;
loadPhotoSkel. Joints [JointType. AnkleRight] = newJoint ;

}
}

else if (line.Split(null)[0] = "FootRight")

{

if (isModel)

{

var newJoint = loadModelSkel. Joints [JointType.FootRight |;
newJoint . Position = newPoint;

newlJoint . TrackingState = JointTrackingState. Tracked;
loadModelSkel. Joints [JointType.FootRight] = newJoint;

}

else

{

var newJoint = loadPhotoSkel. Joints[JointType.FootRight |;
newJoint . Position = newPoint;

newJoint . TrackingState = JointTrackingState. Tracked;
loadPhotoSkel. Joints [JointType.FootRight] = newlJoint;

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 113

[VY VD e}

//
//
// New handlers:
//
//

// Buttons:

/// <summary>

/// Checks if the "Photo" button was pressed

/// </summary>

/// <param name="sender'></param>

/// <param name="e'></param>

private void photoButton_ Click(object sender, RoutedEventArgs e)
{

skelPhoto = true;

photoScreenLock = true;

skelsData . Clear ();

saveButton.IsEnabled = true;

}

/// <summary>

/// Checks if the "Save" button was pressed

/// </summary>

/// <param name="sender'></param>

/// <param name="e"'></param>

private void saveButton_ Click(object sender, RoutedEventArgs e)
{

skelSave = true;

startingPhotoModeOn = false;

// controle de botoes:

saveButton.IsEnabled = false;

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 114

startingPhotoButton .IsEnabled = false;
leftShiftUser . IsEnabled = false
rightShiftUser.IsEnabled = false;

}

/// <summary>

/// Checks if the "Load Model Photo" button was pressed

/// </summary>

/// <param name="sender'></param>

/// <param name='e"></param>

private void loadModelButton Click(object sender, RoutedEventArgs e)
{

loadModelPhoto = true;

if (loadPhoto) compareButton.IsEnabled = true;

}

/// <summary>

/// Checks if the "Load Photo" button was pressed

/// </summary>

/// <param name='sender'></param>

/// <param name='"e'></param>

private void loadPhotoButton_Click(object sender, RoutedEventArgs e)
{

loadPhoto = true;

if (loadModelPhoto) compareButton.IsEnabled = true;

}

/// <summary>

/// Checks if the "REC" button was pressed

/// </summary>

/// <param name='sender"'></param>

/// <param name="e'></param>

private void recButton Click(object sender, RoutedEventArgs e)

{

photoScreenLock = false

// inicio da gravacao:
if (!recOn)
{

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 115

skelsData . Clear (); // limpando skelsData
sinal REC . IsChecked = true;

recOn = true;

startingPhotoModeOn = false;

//controle dos botoes:
radioButtonCaptureMode . [sEnabled = false;
radioButtonComparingMode . [sEnabled = false;
radioButtonPhoto.IsEnabled = false;
radioButtonVideo.IsEnabled = false;
startingPhotoButton .IsEnabled = false;
leftShiftUser . IsEnabled = false
rightShiftUser.IsEnabled = false;

}

// fim da gravacao:
else if (recOn)

{

sinal REC . IsChecked = false;
recOn = false;
startingPhotoModeOn = true;

//controle dos botoes:
radioButtonCaptureMode . IsEnabled = true;
radioButtonComparingMode . [IsEnabled = true;
radioButtonPhoto.IsEnabled = true;
radioButtonVideo.IsEnabled = true;
saveButton.IsEnabled = true;
startingPhotoButton .IsEnabled = true;
leftShiftUser .IsEnabled = true;
rightShiftUser.IsEnabled = true;

/// <summary>
/// Checks if the "Load Video' button was pressed

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 116

/// </summary>

/// <param name="sender'></param>

/// <param name='e"></param>

private void loadVideoButton_Click(object sender, RoutedEventArgs e)

{

loadVideo = true;

videoLengthCountUser = (Directory.GetFiles(videoCorePathUser, "x").Lengtl

// controle de botoes:

leftShift User . IsEnabled = true;
rightShiftUser.IsEnabled = true;
startLoopUser.IsEnabled = true;
syncButton . IsEnabled = true;

if (loadModelVideo) compareButton.IsEnabled = true;
loopMinusButton . IsEnabled = true;

}

/// <summary>

/// Checks if the "Shift (L)" button (left screen) was pressed

/// </summary>

/// <param name="sender"'></param>

/// <param name="e"'></param>

private void LeftShiftModel Click(object sender, RoutedEventArgs e)

{
shiftValueModel ——;

}

/// <summary>

/// Checks if the "Shift (R)" button (left screen) was pressed

/// </summary>

/// <param name='"sender"'></param>

/// <param name="e"'></param>

private void RightShiftModel Click(object sender, RoutedEventArgs e)
{

shiftValueModel++;

}

/// <summary>
/// Checks if the "Start Loop" button (left screen) was pressed

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 117

/// </summary>

/// <param name="sender'></param>

/// <param name='e"></param>

private void StartLoopModel Click(object sender, RoutedEventArgs e)

{

loopOnModel = true;

//controle dos botoes:
startLoopModel . IsEnabled = false;
stopLoopModel . IsEnabled = true;

radioButtonCaptureMode . IsEnabled = false;
radioButtonComparingMode . [sEnabled = false;
radioButtonPhoto.IsEnabled = false;
radioButtonVideo.IsEnabled = false

leftShift Model . IsEnabled = false;
rightShiftModel.IsEnabled = false;
loadModelVideoButton . IsEnabled = false;

}

/// <summary>

/// Checks if the "Stop Loop" button (left screen) was pressed
/// </summary>

/// <param name="sender'></param>

/// <param name='e"></param>

private void StopLoopModel Click(object sender, RoutedEventArgs e)

{
loopOnModel = false;

//controle dos botoes:
startLoopModel . IsEnabled = true;
stopLoopModel . IsEnabled = false;

if (stopLoopUser.IsEnabled = false)

{

radioButtonCaptureMode . IsEnabled = true;
radioButtonComparingMode . IsEnabled = true;
radioButtonPhoto.IsEnabled = true;

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 118

radioButtonVideo.IsEnabled = true;

}

leftShift Model . IsEnabled = true;
rightShiftModel . IsEnabled = true;
loadModelVideoButton.IsEnabled = true;

}

/// <summary>

/// Checks if the "Shift (L)" button (right screen) was pressed
/// </summary>

/// <param name="sender'></param>

/// <param name='e"></param>

private void LeftShiftUser Click(object sender, RoutedEventArgs e)

{
shiftValueUser ——;

}

/// <summary>

/// Checks if the "Shift (R)" button (right screen) was pressed
/// </summary>

/// <param name="sender'></param>

/// <param name='e"></param>

private void RightShiftUser Click(object sender, RoutedEventArgs e)

{

shiftValueUser++;

}

/// <summary>

/// Checks if the "Start Loop" button (right screen) was pressed
/// </summary>

/// <param name="sender'></param>

/// <param name='e'></param>

private void StartLoopUser_ Click(object sender, RoutedEventArgs e)

{

loopOnUser = true;

//controle dos botoes:

startLoopUser.IsEnabled = false;

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 119

stopLoopUser.IsEnabled = true;

radioButtonCaptureMode . IsEnabled = false;
radioButtonComparingMode . [sEnabled = false
radioButtonPhoto.IsEnabled = false
radioButtonVideo.IsEnabled = false;

leftShiftUser . IsEnabled = false
rightShiftUser.IsEnabled = false;
loadVideoButton.IsEnabled = false;

}

/// <summary>

/// Checks if the "Stop Loop" button (right screen) was pressed
/// </summary>

/// <param name='sender"></param>

/// <param name='"e'></param>

private void StopLoopUser_Click(object sender, RoutedEventArgs e)

{

loopOnUser = false;

//controle dos botoes:
startLoopUser.IsEnabled = true;
stopLoopUser.IsEnabled = false;

if (stopLoopModel.IsEnabled = false)

{

radioButtonCaptureMode . IsEnabled = true;
radioButtonComparingMode . IsEnabled = true;
radioButtonPhoto.IsEnabled = true;
radioButtonVideo.IsEnabled = true;

}

leftShift User . IsEnabled = true;
rightShiftUser.IsEnabled = true;
loadVideoButton.IsEnabled = true;

}

/// <summary>

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 120

/// Checks if the "Sync" button was pressed

/// </summary>

/// <param name='"sender'></param>

/// <param name='e'"></param>

private void SyncButton_ Click(object sender, RoutedEventArgs e)
{

shiftValueModel = 0;

shiftValueUser = 0;

}

/// <summary>

/// Checks if the "Loop +' button was pressed

/// </summary>

/// <param name="sender'></param>

/// <param name="e'></param>

private void loopPlusButton_ Click(object sender, RoutedEventArgs e)
{

loopDelaySetup ——;

if (loopDelaySetup <= 0) loopPlusButton.IsEnabled = false;

}

/// <summary>

/// Checks if the "Loop —" button was pressed

/// </summary>

/// <param name="sender'></param>

/// <param name='e"></param>

private void loopMinusButton Click(object sender, RoutedEventArgs e)
{

loopDelaySetup++;

if (loopDelaySetup > 0) loopPlusButton.IsEnabled = true;

}

/// <summary>

/// Checks if the "Load Model Video" button was pressed

/// </summary>

/// <param name='"sender'></param>

/// <param name='e'"></param>

private void loadModelVideoButton Click(object sender, RoutedEventArgs e)

{

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 121

loadModelVideo = true;
videoLengthCountModel = (Directory.GetFiles(videoCorePathModel). Length) -

// controle de botoes:
leftShift Model . IsEnabled = true;
rightShiftModel .IsEnabled = true;
startLoopModel . IsEnabled = true;
syncButton . IsEnabled = true;

if (loadVideo) compareButton.IsEnabled = true;
loopMinusButton . IsEnabled = true;

}

/// <summary>

/// Checks if the "Starting Photo" button was pressed

/// </summary>

/// <param name='sender"></param>

/// <param name='e'></param>

private void startingPhotoButton_Click (object sender, RoutedEventArgs e)

{

startingPhotoSelected = true;

}

/// <summary>

/// Checks if the "Compare' button was pressed

/// </summary>

/// <param name='sender"'></param>

/// <param name="e"'></param>

private void compareButton_ Click(object sender, RoutedEventArgs e)
{

List <Pose> compareListUser = new List<Pose>();

List <Pose> compareListModel = new List<Pose>();

double finalScore = 0;

string finalScoreString;

if (this.radioButtonPhoto.IsChecked.GetValueOrDefault()) // if comparing
{

// user photo
KHMESDK1 8. Skeleton compareSkeletonUser = new KHMESDKI 8. Skeleton (loadPh

Pose comparePoseUser = new Pose(compareSkeletonUser);

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 122

// model photo
KHMESDKI1 8. Skeleton compareSkeletonModel = new KHMESDKI1 8. Skeleton (loadM

Pose comparePoseModel = new Pose(compareSkeletonModel);

// final score
finalScore = Evaluation.Spheres(comparePoseModel, comparePoseUser ,

radiusPose , minScorePose);

foreach (Joint joint in loadPhotoSkel. Joints)

{

Console. WriteLine (" Joint Type = " 4 joint.JointType +

"Joint Position X, Y, Z =" + joint.Position.X 4+ joint.Position.Y +

joint . Position.Z);

}
}

else if (this.radioButtonVideo.IsChecked.GetValueOrDefault()) // else
if comparing videos

{

for (int j = 0; j < videoLengthCountUser; j++) // user

{

// reading movement data

string [| photoLines = File.ReadAllLines (Path.Combine(videoCorePathUser ,
videoCoreNameUser + j + ".txt"));

loadSkelDataFromText (photoLines, false);

// creating movement list

KHMESDK1 8. Skeleton compareSkeletonUser =

new KHMESDKI 8. Skeleton (loadPhotoSkel);

Pose comparePoseUser = new Pose(compareSkeletonUser);

compareListUser.Add(comparePoseUser);

for (int j = 0; j < videoLengthCountModel; j++) // model

{

// reading movement data

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 123

string [| modelLines = File.ReadAllLines (Path.Combine(videoCorePathModel,
videoCoreNameModel
+ 4+ "otxt"));

loadSkelDataFromText (modelLines, true);

// creating movement list

KHMESDK1 8. Skeleton compareSkeletonModel =

new KHMESDKI 8. Skeleton (loadModelSkel);

Pose comparePoseModel = new Pose(compareSkeletonModel);
compareliistModel . Add(comparePoseModel) ;

// creating the movements
Movement compareMovementUser = new Movement (compareListUser);

Movement compareMovementModel = new Movement (compareListModel);

// final score
finalScore = Evaluation.Spheres (compareMovementModel , compareMovementUser

radiusMovement , radiusStep , minScoreMovement, scoreStep);

// plotting results

finalScoreString = finalScore.ToString ();

File. WriteAllText (Path.Combine (compareResultPath , compareResultName + ".t
finalScoreString);

textBox . Clear ();

textBox . Text = finalScoreString;

// Radio Buttons:

/// <summary>
/// Checks changes on the "Capture Mode' radio button state
/// </summary>

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 124

/// <param name='sender"></param>

/// <param name="e'></param>

private void RadioButtonCaptureModeChanged(object sender ,
RoutedEventArgs e)

{
if (this.radioButtonCaptureMode.IsChecked.GetValueOrDefault ())

{

captureModeOn = true;
loadModelPhoto = false;
loadPhoto = false;

loadVideo = false;
loadModelVideo = false;
startingPhotoModeOn = false;
loopDelaySetup = 0;
loopDelayModel = 0;
loopDelayUser = 0;

}

else

{
captureModeOn = false;
}
}

/// <summary>

/// Checks changes on the "Comparing Mode" radio button state
/// </summary>

/// <param name="sender'></param>

/// <param name='e"></param>

private void RadioButtonComparingModeChanged (object sender ,
RoutedEventArgs e)

{

compareButton.IsEnabled = false;

if (this.radioButtonComparingMode.IsChecked.GetValueOrDefault ())
{

comparingModeOn = true;

photoScreenLock = false

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 125

// controle de botoes:
saveButton.IsEnabled = false;
startingPhotoButton.IsEnabled = false;
photoButton.IsEnabled = false;
recButton.IsEnabled = false;
leftShiftUser . IsEnabled = false;
rightShiftUser.IsEnabled = false;

if (radioButtonPhoto.IsChecked = true)
{

loadModelButton.IsEnabled = true;
loadPhotoButton.IsEnabled = true;

}

else if (radioButtonVideo.IsChecked = true)
{

loadModelVideoButton.IsEnabled = true;
loadVideoButton.IsEnabled = true;

}
}

else

{

comparingModeOn = false;

// controle de botoes:

if (radioButtonPhoto.IsChecked = true) photoButton.IsEnabled = true;
else if (radioButtonVideo.IsChecked = true) recButton.IsEnabled = true;
loadModelButton.IsEnabled = false;

loadPhotoButton.IsEnabled = false;

loadModelVideoButton . IsEnabled = false;

loadVideoButton.IsEnabled = false;

leftShift User . IsEnabled = false;

rightShiftUser.IsEnabled = false;

startLoopUser.IsEnabled = false;

leftShift Model . IsEnabled = false;

rightShiftModel .IsEnabled = false;

startLoopModel . IsEnabled = false;

syncButton . IsEnabled = false;

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 126

loopMinusButton.IsEnabled = false;
loopPlusButton . IsEnabled = false;

}
}

/// <summary>

/// Checks changes on the "Photo" radio button state

/// </summary>

/// <param name="sender'></param>

/// <param name='e"></param>

private void RadioButtonPhotoChanged(object sender, RoutedEventArgs e)

{

startingPhotoModeOn = false;

if (this.radioButtonPhoto.IsChecked.GetValueOrDefault())
{

loadVideo = false;

loadModelVideo = false;

loopDelaySetup = 0;

loopDelayModel = 0;

loopDelayUser = 0;

}

else

{

loadModelPhoto = false;
loadPhoto = false;

}
}

/// <summary>

/// Checks changes on the "Video' radio button state

/// </summary>

/// <param name="sender'></param>

/// <param name="e'></param>

private void RadioButtonVideoChanged(object sender, RoutedEventArgs e)
{

saveButton.IsEnabled = false;

startingPhotoButton.IsEnabled = false;

APENDICE C. Cédigo Fonte: Aplicativo Kinect V1 127

leftShift User . IsEnabled = false;
rightShiftUser.IsEnabled = false;

compareButton.IsEnabled = false;

if (this.radioButtonVideo.IsChecked.GetValueOrDefault())
{

// controle de botoes:
if (radioButtonCaptureMode.IsChecked = true) recButton.IsEnabled = true;

else if (radioButtonComparingMode.IsChecked = true)
{

loadVideoButton.IsEnabled = true;
loadModelVideoButton . IsEnabled = true;

}

photoButton.IsEnabled = false;
loadModelButton . IsEnabled = false;
loadPhotoButton.IsEnabled = false;

}

else

{

// controle de botoes:

if (radioButtonCaptureMode.IsChecked = true) photoButton.IsEnabled = tru

else if (radioButtonComparingMode.IsChecked = true)
{

loadModelButton . IsEnabled = true;
loadPhotoButton.IsEnabled = true;

}

loadModelVideoButton . IsEnabled = false;
loadVideoButton . IsEnabled = false;
recButton.IsEnabled = false;
leftShiftUser . IsEnabled = false;
rightShiftUser.IsEnabled = false;
startLoopUser.IsEnabled = false;
leftShift Model . IsEnabled = false;

